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1 Introduction

1.1 Presentation of the problem

Here is a fundamental problem in scheduling theory: n tasks must be com-
pleted on k processors in the minimum time, with the constraint that some
tasks can not be executed at the same time because they share the same re-
sources. Due to their numerous industrial applications, many variants of this
problem have been extensively studied; the vast literature dedicated to com-
binatorial optimization and operations research contains a lot of references
about them. The interested reader is referred to the paper of Krarup and De
Werra [35] and the recent survey of Blazewicz et al. [5].

When all tasks have the same processing time, the problem in question has
an elegant formulation in graph-theoretical terms. In effect, a natural way to
express mutual exclusion between tasks is to define a simple and undirected
graph, where each vertex represents one task and two vertices are connected by
an edge if the corresponding tasks are in conflict. Then, an optimal schedule
of the n tasks on k processors corresponds exactly to a minimum coloring
of the conflict graph such that each color appears at most k times. In this
way, Baker and Coffman [2] have called Mutual Exclusion Scheduling
(shortly MES) the following combinatorial optimization problem:

Mutual Exclusion Scheduling
Input: a simple and undirected graph G = (V,E), a positive integer k;
Output: a minimum coloration of G where each color appears at most k times.

When k is a fixed parameter (i.e., a constant of the problem), the abbreviation
k-MES shall be used to name the problem.

Finding a minimum coloring of a graph is a celebrated NP-hard problem [34].
Consequently, the mutual exclusion scheduling problem is NP-hard too and
the quest for a polynomial-time algorithm to solve this problem may be vain.
Nevertheless, if the problem is restricted to graphs for which a minimum col-
oring is computed in polynomial time (for example perfect graphs), then the
MES problem is not necessarily NP-hard. Unfortunately, only few positive
results have been published in this way. The problem is NP-hard for com-
plements of line-graphs (even for fixed k ≥ 3) [9], for bipartite graphs and
cographs [7], for interval graphs (even for fixed k ≥ 4) [7], for complements of
comparability graphs (even for fixed k ≥ 3) [37], and for permutation graphs
(even for fixed k ≥ 6) [31]. To the best of our knowledge, the sole classes of
graphs for which MES problem was proved to be polynomial-time solvable
are split graphs [37,7], forests and trees [2,32], collections of disjoint cliques
[44], complements of strongly chordal graphs [12] and complements of interval
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graphs [37,7], and bounded treewidth graphs [6]. Note that Jost [33, pp. 154–
164] has recently claimed that MES for complements of triangulated graphs
is polynomial-time solvable.

1.2 Motivations

Among perfect graphs, interval graphs can be distinguished by their field of
applications large and varied: genetic, scheduling, psychology, archaeology, etc.
An interval graph is the intersection graph of a set of intervals of the real line,
that is, a graph whose vertices correspond to intervals such that two vertices
connected by an edge are associated to intersecting intervals (see Fig. 1).

R

Fig. 1. An interval graph and its representation.

Here is an application related to interval graphs met during the development
of the software Bamboo for workforce planning, edited by the firm Experian-
Prologia SAS [3]. Let {Ti}i=1,...,n be a set of daily tasks to assign to employees,
each task having a starting date li and an ending date ri. An employee is
able to execute correctly a set of tasks if they do not overlap during the day.
For several reasons (regulation of work, security, maintenance of machines),
an employee must not execute more than k tasks in a day (generally k ≤ 5).
Then, the question is how employees have to be mobilized to complete all
the tasks? Obviously, a planning describing which tasks have to be assigned
to each employee is required. Since each task is only an interval of time, the
problem amounts to coloring the underlying interval graph such that each
color appears no more than k times, which corresponds exactly to the mutual
exclusion scheduling problem for interval graphs. When the planning is cyclic
(the same tasks recur each day and some of them spread out over two con-
secutive days), we obtain the same problem but for circular-arc graphs. When
there are not enough employees to execute all the tasks (e.g., because some
employees are absent), it is interesting to allow overlaps between certain tasks
during the assignment. In this case, the problem relates to tolerance graphs.
Unfortunately, the following result of Bodlaender and Jansen [7] is a serious
strike against the resolution of these workforce planning problems.

Theorem 1.1 (Bodlaender and Jansen, 1995) For each fixed k ≥ 4, the
k-MES problem is NP-hard for interval graphs (and also for circular-arc
graphs and bounded tolerance graphs).

3



The objective of this paper is to detail the complexity of mutual exclusion
scheduling problem for interval graphs and related classes, in particular circular-
arc graphs and tolerance graphs. Although the question of the complexity of
3-MES for interval graphs raised by Bodlaender and Jansen [7] is not answered
here, the study that we have led on the subject provides several positive re-
sults. Some polynomial cases significant in practice are exhibited, for which
we have been careful to devise some simple and efficient algorithms (in partic-
ular linear-time and space algorithms). On the other hand, by reinforcing the
NP-hardness result of Bodlaender and Jansen [7], we obtain a more precise
cartography of the complexity of the problem for the classes of graphs studied.

First, the complexity of MES is approached for interval graphs. A new al-
gorithm, much simpler than the previous one of [1], is proposed to solve in
linear time and space the 2-MES problem for interval graphs. In addition,
the problem is shown to be linear-time and space solvable for two well-known
subclasses of interval graphs, namely proper interval graphs and threshold
graphs. Then, the problem is investigated for the two extensions of interval
graphs which are circular-arc graphs and tolerance graphs. An algorithm is
proposed to solve in O(n2) time and linear space the problem restricted to
proper circular-arc graphs, as well as a linear-time and space algorithm for
the same problem when k = 2. Finally, the 3-MES problem is shown to be
NP-hard for bounded tolerance graphs, even if any cycle of length greater
than or equal to five has two chords. This result has for corollary that the 3-
MES problem is NP-hard for Meyniel graphs and weakly triangulated graphs,
even if their complement is transitively orientable.

All the results presented here appear in the author’s thesis [20], written in
French, and have been announced in [21]. A preliminary version of these results
also appears in [18,19].

1.3 Interval graphs and related classes

Formally, a graph G = (V,E) is an interval graph if to each vertex v ∈ V
can be associated an open interval Iv of the real line, such that two distinct
vertices u, v ∈ V are adjacent if and only if Iu ∩ Iv 6= ∅. The family {Iv}v∈V

is an interval representation of G (see Fig. 1). The left and right endpoints of
the interval Iv are respectively denoted l(Iv) and r(Iv). The class of interval
graphs coincide with the intersection of the classes of chordal graphs and of
complements of comparability graphs. A graph is chordal if it contains no
induced cycle of length greater than or equal to four; chordal graphs are also
known as the intersection graphs of subtrees in a tree. Comparability graphs
are the transitively orientable graphs, they correspond to graphs of partial
orders.
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Fig. 2. A circular-arc graph and its representation around the circle.

Circular-arc graphs and tolerance graphs are two natural extensions of inter-
val graphs. Circular-arc graphs are the intersection graphs of a set of arcs on
a circle. A circular-arc graph G = (V,E) admits a circular-arc representa-
tion {Av}v∈V in which each arc Av is defined by its counterclockwise endpoint
ccw(Av) and its clockwise endpoint cw(Av) (see Fig. 2). Note that a circular-
arc representation of a graph G which fails to cover some point p on the circle is
topologically the same as an interval representation of G. A graph G = (V, E)
is a tolerance graph if to each vertex v ∈ V can be associated an interval Iv and
a positive real number t(v) referred to as its tolerance, such that each pair of
distinct vertices u, v ∈ V are adjacent if and only if |Iu∩Iv| > min{t(u), t(v)}.
The family {Iv}v∈V is a tolerance representation of G. When G has a toler-
ance representation such that the tolerance associated to each vertex v ∈ V
is smaller than the length of Iv, G is a bounded tolerance graph.

Proper interval graphs and threshold graphs are two subclasses of interval
graphs. A graph G is a proper interval graph if there is an interval repre-
sentation of G in which no interval properly contains another. The notion of
properness is defined similarly for circular-arc graphs and tolerance graphs. A
graph G = (V,E) is a threshold graph if to each vertex v ∈ V can be associ-
ated a positive integer av such that X ⊆ V is an independent set if and only
if

∑
x∈X ax ≤ t with t an integer constant (called the threshold). The vertices

of a threshold graph can be partitioned into a clique C = C1 ∪ · · · ∪ Cr and
an independent set S = S1 ∪ · · · ∪ Sr (r ≤ n and Ci, Si not empty for all
i = 1, . . . , r) such that a vertex of Si is adjacent to a vertex of Ci′ if and only
if i′ > i for any i, i′ ∈ {1, . . . , r} (see Fig. 3).

Interval graphs and tolerance graphs are perfect, which is not true for (proper)
circular-arc graphs (see [8,24]). Interval graphs, proper interval graphs, thresh-
old graphs, circular-arc graphs and proper circular-arc graphs are recognized
in linear time and space (see [8,11,13,24,29]); the complexity of recognition
for tolerance graphs remains an open question. Computing a minimum color-
ing is done in linear time and space for interval graphs [27,28] (see also [20,
pp. 42–47]) and in O(n2) time for tolerance graphs if a tolerance represen-
tation is given in input [25]. The minimum coloring problem is NP-hard for
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Fig. 3. An interval representation of a threshold graph.

circular-arc graphs [17]. Restricted to proper circular-arc graphs, the mini-
mum coloring problem becomes solvable in O(n1.5) time [41]. For more details
on these graphs and their applications, the reader can consult the books of
Roberts [39,40], Golumbic [24,26], Fishburn [15] and Brandstädt et al. [8].

1.4 Basic definitions and notations

The number of vertices and the number of edges of the graph G = (V, E)
are respectively denoted by n and m throughout the paper. All the graph-
theoretical terms which are not defined here can be found in [8,24].

A complete set or clique is a subset of pairwise adjacent vertices. The clique C
is maximum if no other clique of the graph has a size strictly greater than the
one of C; ω(G) denotes the size of a maximum clique in the graph G. On the
other hand, an independent set or stable is a subset of pairwise non-adjacent
vertices and the stability α(G) of a graph G denotes the size of a maximum
stable in G. A q-coloring of the graph G corresponds to a partition of G
into q stables. The number χ(G), which denotes the cardinality of a minimum
coloring in G, is called the chromatic number of G. By analogy, the cardinality
of a minimum coloring of G such that each color appears at most k times is
denoted by χ(G, k); a trivial lower bound for the number χ(G, k) is given by
the expression max{χ(G), dn/ke}.

Finally, a matching in a graph is a subset of edges such that no two of them
share a vertex in common. A maximum matching (resp. perfect matching) is
a matching whose cardinality is as large as possible (resp. equals to n/2). A
maximum matching corresponds in fact to a minimum partition into cliques
of size at most two or a minimum partition into stables of size at most two in
the complement graph.
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2 Mutual exclusion scheduling with interval graphs

In this section, the linear order induced by non-decreasing left (resp. right)
endpoints of a set I of intervals is denoted by <l (resp. <r).

2.1 A new linear-time algorithm for k = 2

The 2-MES problem is solved in polynomial time by reducing it to the max-
imum matching problem in the complement graph. However, algorithms for
maximum matching in general graphs are not easy to implement and their ex-
ecution time is more than quadratic in the number of vertices and edges of the
graph [23]. That is why designing simple and efficient matching algorithms,
dedicated to certain classes of graphs, remains topical.

To our knowledge, only two algorithms have been proposed to solve the 2-
MES problem restricted to the class of interval graphs. The first appears in
an unpublished manuscript of M.G. Andrews and D.T. Lee. This algorithm,
briefly evoked in [1], considers an interval representation as input and performs
plane sweepings to build in O(n log n) time an optimal solution (even if the
endpoints of the intervals are given sorted in input). The second, of a geometric
nature too, is presented in the paper of Andrews et al. [1]. The authors give
a parallel recursive algorithm which requires O(log3n) time on an EREW
PRAM architecture with O(n/log2n) processors (see [10, pp. 675–715] for an
introduction to parallel algorithms). The serial version of their algorithm runs
in O(n log n) time and the authors claim that this complexity can be lowered
to O(n) if the endpoints of intervals are given sorted in input. Despite that,
their algorithm remains complicated and the proof of its correctness is long.

In this section, a new algorithm is presented which relies on graph-theoretical
concepts. This algorithm is simple, incremental and the proof of its validity is
short. We show that this algorithm runs in O(n) time and space if an ordered
interval representation is given as input. Similar to Andrews et al. [1], our
algorithm uses as subroutine an algorithm for maximum matching in convex
bipartite graphs. A bipartite graph B = (X,Y,E) is Y -convex if the vertices
of Y can be ordered such that the vertices adjacent to any vertex of X appear
consecutively in this order. Convex bipartite graphs have been introduced by
Glover [22]; Steiner and Yeomans [42] have shown how computing a maximum
matching in a convex bipartite graph in O(|X|) time and O(|Y |) space, if the
interval of vertices of Y adjacent to each vertex of X is given in input.
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2.1.1 Ingredients and correctness of the algorithm

Although we work on an open interval representation rather than on the inter-
val graph itself, we shall keep a graph-theoretical vocabulary to describe the
algorithm. Thus, a stable is defined as a set of pairwise disjoint intervals and a
clique as a set of pairwise intersecting intervals. In this context, coloring a set
of intervals consists of partitioning this set into subsets of disjoint intervals.
By analogy with matching, we shall say that two intervals can be matched
when they are disjoint.

Consider a set I = {I1, . . . , In} of intervals and a minimum partition S =
{S1, . . . , Sχ(I)} of I into stables. Here are the few assertions on which the
validity of the algorithm relies.

Lemma 2.1 If a stable Su ∈ S contains only one interval, then this one
belongs to each maximum clique of I.

Proof. Since interval graphs are perfect, the cardinality of any maximum
clique in I equals the cardinality of any minimum coloring of I (cf. [8,24]).
Then, any maximum clique must contain one and only one interval from each
stable of S. If the unique interval of Su does not belong to a maximum clique
of I, we obtain a contradiction. 2

Lemma 2.2 If all stables of S contains more than two intervals and that the
number n of intervals in I is even, then χ(I, 2) = n/2.

Proof. Let Su, Sv ∈ S be two stables of size odd and greater than or equal to
three. We show that it is always possible to match two intervals, the one from
Su and the other from Sv, in order to redefine two new stables of size even and
greater than two. Let Ia, Ib ∈ Su and Ic, Id ∈ Sv be four intervals such that
r(Ia) ≤ l(Ib) and r(Ic) ≤ l(Id). If Ia and Id are disjoint, then these ones forms
the desired pair for matching. Otherwise, we claim that Ib and Ic are such
ones. Since Ia and Id are intersecting, we have l(Id) ≤ r(Ia). Then, by using
the inequalities r(Ic) ≤ l(Id) and r(Ia) ≤ l(Ib), we obtain that r(Ic) ≤ l(Ib).

To conclude, the following construction establishes the lemma. Since n is even,
the number of stables of odd size is necessarily even too. According to the pre-
vious property, we can redefine two by two the stables of odd size in stables
of even size, while exhibiting pairs of disjoint intervals. Finally, the remain-
ing stables, all of even size, admits a trivial partition into disjoint pairs of
intervals. 2

Proposition 2.3 If the number ϑ(I) of stables of S containing only one in-
terval is as small as possible, then χ(I, 2) = d(n + ϑ(I))/2e.
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Proof. The proposition is established thanks to the two previous lemmas.
The first lemma imposes that χ(I, 2) ≥ d(n− ϑ(I))/2e+ ϑ(I), since at most
ϑ(I) intervals of I can not be matched. Having extracted these ones, the
second lemma enables us to obtain a perfect matching among the n − ϑ(I)
remaining intervals (minus one if this number is odd). 2

According to this proposition, the 2-MES problem is reduced to finding a col-
oring of the set I such that the number of stables of size one is as small as
possible. By Lemma 2.1, this new problem is solved by computing a maxi-
mum disjoint matching Mc between the intervals of a maximum clique and
the rest of the intervals. In effect, having computed this matching, a proce-
dure Complete-Stables is used to minimize ϑ(I) by adding to each stable
Su = {Ii} of size one the interval Ij ∈ Sv if the pair (Ii, Ij) belongs to Mc.
Hence, an optimal solution to the 2-MES problem is obtained by applying the
constructive proof of Lemma 2.2. Here we describe the complete algorithm.

Algorithm 2-MES-Intervals;
Input: a set I = {I1, . . . , In} of intervals;
Output: an optimal solution M to the 2-MES problem for I;
Begin;
stage 1:

compute a minimum coloring S = {S1, . . . , Sχ(I)} of I;
if all the stables of S have a size at most two then goto stage 3;
if all the stables of S have a size at least two then goto stage 3;

stage 2:
compute a maximum clique C = {c1, . . . , cχ(I)} of I;
build the bipartite graph Bc = (X,Y, E) such that:

. X = C and Y = I \ C;

. E = {(Ii, Ij) | Ii ∈ C, Ij ∈ I \ C and Ii ∩ Ij = ∅};
compute a maximum matching Mc in Bc;
S ← Complete-Stables(S,Mc);

stage 3:
M← ∅;
for each stable Su ∈ S of size one do

remove Su from S and add it to M;
if the number of remaining intervals in S is odd then

remove one interval from any stable of odd size and add it to M;
compute a perfect disjoint matching in S and add it to M;
return M;

End;

2.1.2 Complexity of the algorithm

An interval representation I = {I1, . . . , In} with the two orders <l and <r on
I is assumed to be given in input. These two orders allow us to obtain in O(n)
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time and space the list of the n intervals ordered according to <l or <r.

The complexity of stage 1 is dominated by the complexity of computing a
minimum coloring of I. Since the orders <l and <r are given, this computation
can be done in O(n) time and space [27] (see also the new coloring algorithm
given in [20, pp. 42–47]). Now, the complexity of stage 2 relies on the following
property.

Lemma 2.4 The bipartite graph Bc is Y -convex.

Proof. Recall that the set X corresponds to a maximum clique C ∈ I and
the set Y to I \C. This second set is subdivided into two disjoint sets Il and
Ir, respectively the set of intervals on the left of C and the set of intervals on
the right of C (an interval can not belong to the one and the other without
belonging to the clique). Having ordered Ir according to <l and Il according
to <r, the linear order on Y is obtained by concatenating the two sets Ir and
Il such that the last interval of Ir appears before the first interval of Il in the
order. Now, for each cu ∈ C, set au = min{i | r(cu) ≥ l(Ii) and Ii ∈ Ir} and
bu = min{i | r(Ii) ≥ l(cu) and Ii ∈ Il}. Then, it is easy to verify that for any
i ∈ {au, . . . , bu}, the intervals cu and Ii are disjoint (see Fig. 4). Consequently,
the bipartite graph Bc is Y -convex. 2

<r

<l

cj ∈ C

l(cj)

Ir

Il

bj

r(cj)

aj

Fig. 4. The proof of Lemma 2.4.

Since the bipartite graph Bc is convex, a maximum matching Mc can be com-
puted in O(n) time by using the algorithm of Steiner and Yeomans [42]. Their
algorithm requires as input the following representation of Bc: the linear or-
der on Y and for each u ∈ X, the two values au and bu. Here we describe
how we efficiently compute this representation. When the intervals are or-
dered, a maximum clique is obtained in O(n) time and space [28] (see also
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the algorithm given in [20, pp. 42–47]). This maximum clique, denoted by
C = {c1, . . . , cχ(I)}, is defined in such a way that cu corresponds to the inter-
val of C which belongs to the stable Su ∈ S. Then, the linear order on Y (as
defined in Lemma 2.4) is obtained in O(n) time thanks to orders <l and <r.
Finally, the indices au of the intervals cu ∈ C are determined by sweeping the
set Ir ordered according to <l, provided that the intervals of C are ordered
according to <r (because cu <r cu′ implies that au ≤ au′). Obviously, the in-
dices bu can be determined in a symmetric way by sweeping the set Il, which
completes the construction of the bipartite graph Bc.

To conclude the analysis of stage 2, an implementation of Complete-Stables
is given whose execution time is linear. The size of each stable is assumed to
be computed in O(1) time, just as, for an interval, the index of the stable to
which it belongs.Mc is considered as an array in which is stored at u the index
of the interval of I \ C matched to cu ∈ C (or zero if this one is unmatched).
Observe that once a stable Su is removed from S ′, it can not be added to this
set in the next iterations of the loop, which ensures a linear running time.

Algorithm Complete-Stables;
Input: a minimum coloring S of I, a maximum matching Mc of Bc;
Output: a minimum coloring S such that ϑ(I) is minimum;
Begin;
S ′ ← ∅;
for each stable Su ∈ S do

if Su is of size one then S ′ ← S ′ ∪ {Su};
while S ′ 6= ∅ do
S ′ ← S ′ \ {Su};
let i be the index stored at u in Mc;
if i 6= 0 then

let v be the index of the stable to which Ii belongs;
Sv ← Sv \ {Ii}, Su ← Su ∪ {Ii};
if Sv is of size one then S ′ ← S ′ ∪ {Sv};

return S;
End;

Finally, stage 3 takes O(n) time too. The proof of Lemma 2.2 provides a simple
linear-time algorithm to compute a perfect disjoint matching, since S contains
only stables of size at least two and an even number of intervals. The space
used all along the algorithm not exceeding O(n) (even during the execution
of the Steiner-Yeomans algorithm [42]), we hold the following result.

Proposition 2.5 The algorithm 2-MES-Intervals computes in O(n) time
and space an optimal solution to the 2-MES problem given a set I of n intervals
and the orders <l and <r on I in input.

Since an ordered interval representation (according to <l or <r) is computed
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in linear time and space given an interval graph or its complement [29], we
obtain the following corollary.

Corollary 2.6 The 2-MES problem (resp. the maximum matching problem)
is solved in linear time and space for interval graphs (resp. complements of
interval graphs).

2.2 Linear-time algorithms for subclasses of interval graphs

Baker and Coffman [2] gave an O(k2 log k + n)-time algorithm to solve MES
for forests. Since any bipartite interval graph is isomorphic to a forest (observe
that such a graph contains no induced cycle of length greater than or equal
to three), we obtain the following result.

Proposition 2.7 (Baker and Coffman, 1996) The MES problem is solved
in O(k2 log k + n) time for bipartite interval graphs.

In this section, we present linear-time algorithms to solve MES restricted to
two other subclasses of interval graphs, namely proper interval graphs and
threshold graphs.

2.2.1 The case of proper interval graphs

In their paper, Andrews et al. [1] propose a simpler algorithm to determine
a maximum disjoint matching in a set of intervals when these intervals are
proper. Their algorithm runs in O(log n) time on an EREW PRAM with
O(n/ log n) processors, if the endpoints of intervals are given sorted in input.
Its serialization takes O(n) time and space under the same conditions. Here
we go beyond this result by presenting a greedy algorithm to solve the MES
problem for proper interval graphs in linear time and space, for any value of
k. For the sake of simplicity, the intervals and the stables are numbered from
zero. The set I of open intervals is assumed to be ordered according to <l in
input.

Algorithm MES-Proper-Intervals;
Input: an ordered set I = {I0, . . . , In−1} of proper intervals, an integer k;
Output: an optimal solution S to the MES problem for I;
Begin;

compute ω(I);
χ(I, k) ← max(ω(I), dn/ke);
S0 ← · · · ← Sχ(I,k)−1 ← ∅;
for i from 0 to n− 1 do

u ← i mod χ(I, k), Su ← Su ∪ {Ii};
return S ← {S1, . . . , Sχ(I,k)};
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End;

Proposition 2.8 The algorithm MES-Proper-Intervals computes in O(n)
time and space an optimal solution to the MES problem, given a set I of n
proper intervals ordered according to <l in input.

Proof. The size ω(I) of a maximum clique of I is obtained in O(n) time and
space [28] (see also the algorithm given in [20, pp. 42–47]). Then, the remainder
of the algorithm runs in O(n) time and space. To conclude, we prove that the
output set S of stables is an optimal solution to the MES problem.

First, we claim that the stables S0, . . . , Sχ(I,k)−1 are all of size at most k.
According to the algorithm, the sizes of two stables differ from at most one.
Thus, the existence of a stable of size strictly greater than k implies n >
k ·χ(I, k), which is a contradiction. Now, suppose that two intervals Ii, Ij ∈ Su

with i < j are intersecting. According to the algorithm, we have i = u + α ·
χ(I, k) and j = u + β · χ(I, k) with α < β. When the intervals are proper,
the left endpoints appear in the same order than the right endpoints. Hence,
the intervals Ii, Ii+1, . . . , Ij−1, Ij contain all the portion ]l(Ij), r(Ii)[ of the line,
inducing a clique of size j− i + 1 = (β−α) ·χ(I, k) + 1 > χ(I, k), which is in
contradiction with the hypothesis. Consequently, the set S forms a partition
of I into stables of size at most k; since max(ω(I), dn/ke) is a lower bound
for χ(I, k), this one has a minimum cardinality. 2

Corollary 2.9 Let G be a proper interval graph. Then, the equality

χ(G, k) = max{ω(G), dn/ke}

holds for all integers k ≥ 1.

Since an ordered proper interval representation is computed in linear time and
space given a proper interval graph [11], we obtain the following corollary.

Corollary 2.10 The MES problem is solved in linear time and space for
proper interval graphs.

2.2.2 The case of threshold graphs

The threshold graphs form a subclass of interval graphs, but also of split
graphs. A split graph is a graph whose vertices admit a partition into two
subsets S and C, where S is a stable and C a clique. By analogy with bipartite
graphs, such a graph is denoted G = (S, C, E); we shall write s = |S| and
c = |C|. For more details on split graphs, the reader is referred to [24, pp. 149–
156]. Independently, Lonc [37] and Bodlaender and Jansen [7] have shown that

13



MES becomes polynomial-time solvable when restricted to split graphs. Hence,
MES is solvable in polynomial time for threshold graphs too. Having reminded
the result of Lonc [37], we show that linear time and space suffice to solve the
MES problem for threshold graphs, and even for a larger class which is called
convex split graphs (by analogy with convex bipartite graphs).

The algorithms given by Lonc [37] and Bodlaender and Jansen [7] are based
on the following observation, where ϑ(G) denotes the maximum number of
vertices of S which belong to disjoint stables of size at most k and containing
each one a vertex of C.

Proposition 2.11 Let G = (S,C,E) be a split graph. Then, the equality

χ(G, k) = c + d(s− ϑ(G))/ke
holds for all integers k ≥ 1.

Proof. The vertices of C must be placed in different stables, which implies
that χ(G, k) ≥ c. Having extracted the ϑ(G) vertices which belong to disjoint
stables of size at most k and containing each one a vertex of C, the remaining
vertices of S can be grouped in d(s− ϑ(G))/ke stables of size at most k. 2

Lonc [37] shows that the number ϑ(G) corresponds to the size of a maximum
matching in a certain bipartite graph Bl, obtained as follows: replace each
vertex u ∈ C by k− 1 vertices u1, . . . , uk−1 and join each one to all vertices in
S not connected to u, then remove all the old edges of the graph (including
those of C). Having a maximum matching in Bl, an optimal partition of G
into stables of size at most k is computed as follows. First, for each vertex
u ∈ C, define one stable containing u and the vertices of S matched to vertices
u1, . . . , uk−1. Then, partition in an optimal way the set of vertices remaining
in S.

By analogy with bipartite graphs, a split graph G = (S, C, E) is S-convex if
the vertices of S admit a linear order such that for all i ∈ C, the vertices of
S connected to i ∈ C appear consecutively in this order. A S-convex repre-
sentation of G is given by the order on the vertices of S and for each vertex
i ∈ C, two values ai and bi, respectively the index of the first and the index
of the last vertices in the (ordered) interval of vertices adjacent to i.

Proposition 2.12 The MES problem is solved in O(n) time and space for
S-convex split graphs, given a S-convex representation of the graph in input.

Proof. The proof relies on the fact that the bipartite graph Bl defined by Lonc
[37] becomes circular-convex in the case of S-convex split graphs. Circular-
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convex bipartite graphs are a natural extension of convex bipartite graphs
where the notion of convexity is represented by arcs around the circle instead
of intervals of the line [36]. Indeed, let G = (S, C, E) be a S-convex split graph
with < the linear order on S. The vertices of S connected to any vertex i ∈ C
appear consecutively in the order <. By extending < to a circular order <c

(the first vertex of S in the order < becomes the successor of the last vertex of
S in this same order), the vertices of S not connected to i appear consecutively
in the order <c.

A circular-convex representation of Bl is obtained from the S-convex repre-
sentation of G by sweeping the vertices of C. Liang and Blum [36] have shown
that a maximum matching in the bipartite graph Bl can be determined by us-
ing two passes of Glover’s heuristic for maximum matching in convex bipartite
graphs [22]. By modifying Glover’s heuristic in order to allow the selection of
k−1 incident edges for each vertex i ∈ C (and not only one), Lonc’s algorithm
can be simulated in O(s + c) time and space without explicitly constructing
the graph Bl (indeed, the number of vertices selected to match with vertices
of C remains lower than s). 2

Since a S-convex representation is computed in linear time and space by using
a recognition algorithm for the consecutive ones property [29], we have the
following corollary.

Corollary 2.13 The MES problem is solved in linear time and space for S-
convex split graphs.

According to the following lemma, threshold graphs form a very special class
of convex split graphs.

Lemma 2.14 Any threshold graph G = (S, C, E) is a S-convex and C-convex
split graph. Moreover, the vertices of S can be ordered such that for all i ∈ C
connected to at least one vertex of S, we have ai = 1.

The proof is simply derived from the definition of threshold graphs given in
introduction. Then, the reader shall notice that for threshold graphs, a simple
linear sweeping of the vertices of C and S in the order suffices to compute an
optimal solution to the MES problem.

Corollary 2.15 The MES problem is solved in linear time and space for
threshold graphs.

15



3 Mutual exclusion scheduling with circular-arc graphs

The result of Bodlaender and Jansen (Theorem 1.1) seems to condemn the
quest of a polynomial-time algorithm for MES restricted to circular-arc graphs
(except for the case k = 3 whose complexity remains unknown). In this section,
the problem is approached for a natural subclass of circular-arc graphs, namely
proper circular-arc graphs. This class encompasses proper interval graphs,
studied in the previous section, and unit circular-arc graphs, (i.e., the graphs
having a circular-arc representation in which all arcs have the same length).
We show that MES is solvable in O(n2) time and linear space when restricted
to proper circular-arc graphs, and even in linear time and space in the case
k = 2. Note that all the circular-arcs considered throughout the section are
open.

3.1 A quadratic-time algorithm for the general case

The algorithm relies on the paradigm of bichromatic exchange of vertices,
particularly employed by De Werra [43] in the context of edge-coloring and
timetabling problems.

Lemma 3.1 Let G be a proper circular-arc graph and Su, Sv two disjoint sta-
bles of G. If the stables Su and Sv have different sizes, then any connected
component of the bipartite graph induced by these two stables is isomorphic to
a chain.

Proof. Since G is a proper circular-arc graph, this one can not contain K1,3

as an induced subgraph. From this point we deduce that any connected com-
ponent of the bipartite graph induced by Su and Sv is isomorphic to a chain
or an even cycle (all vertices of the bipartite graph has degree at most two).
Now, consider an even cycle C in a proper circular-arc representation of this
bipartite graph. Clearly, the arcs corresponding to the vertices of the cycle C
must cover the entire circle (see Fig. 5).

Since the stables Su and Sv have different sizes, assume without loss of gener-
ality that |Su| > |Sv| > 1. Clearly, a vertex of Su exists which does not belong
to the cycle C. Now, the arc corresponding to this vertex is necessarily inserted
between two arcs of the stable Su which belong to the cycle C. Consequently,
this one is entirely covered by an arc of Sv, which contradicts the fact that the
arcs are proper. Thereby, any connected component of the bipartite graph is
isomorphic to a chain. 2
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Fig. 5. A proper circular-arc representation of the even cycle C6.

Lemma 3.2 Let G be a proper circular-arc graph and k a positive integer.
Then, a minimum coloring of G exists which satisfies one of the two following
assertions: (a) each color appears at least k times, (b) each color appears at
most k times.

Proof. Let S = {S1, . . . , Sχ(G)} be a minimum coloring of G. We show that if
the coloring S does not the satisfy the conditions (a) or (b), then the algorithm
described below brings us back to one of these cases. In this algorithm, the
procedure Connected-Components is employed which returns the set B of
connected components of the bipartite graph induced by two disjoint stables
Su, Sv of G. For each connected component Br ∈ B, we are able to access to
the set Bu

r (resp. Bv
r ) of vertices of Br which belong to Su (resp. Sv).

Algorithm Refine-Coloring;
Input: a minimum coloring S = {S1, . . . , Sχ(G)} of G, an integer k;
Output: a coloring S satisfying one of the two conditions (a) or (b);
Begin;

while two disjoint stables Su, Sv ∈ S exist such that |Su| > k and |Sv| < k do
B ← Connected-Components(Su, Sv);
while |Su| > k and |Sv| < k do

choose a connected component Br ∈ B such that |Bu
r | = |Bv

r |+ 1;
exchange the vertices of Su and Sv corresponding to Bu

r and Bv
r ;

return S;
End;

The correctness of this algorithm is established. Having determined the con-
nected components of the bipartite graph induced by the stables Su and Sv,
we claim that one component Br ∈ B exists such that |Bu

r | = |Bv
r | + 1 while

|Su| > k and |Sv| < k. According to Lemma 3.1, each connected component
Br meets one of the three following conditions: (i) Br is an odd chain and
|Bu

r | = |Bv
r |, (ii) Br is an even chain and |Bu

r | + 1 = |Bv
r |, (iii) Br is an even

chain and |Bu
r | = |Bv

r |+1. Since the inequalities |Su| > k and |Sv| < k impose
that |Su| ≥ |Sv|+2, at least two connected components of the bipartite graph
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must satisfy the condition (iii), which justifies our claim. Finally, at the end
of each outer while loop, the size of one stable of S is fixed to k. Thus, after
at most χ(G) loops, the algorithm returns a minimum coloring satisfying one
of the two conditions of the lemma. 2

Now, we are able to describe the complete algorithm for solving the MES
problem for proper circular-arc graphs. For the sake of simplicity, the arcs and
the stables are numbered from zero. The set A of proper arcs is assumed to
be arranged according to the circular order in input.

Algorithm MES-Proper-Circular-Arcs;
Input: an ordered set A = {A0, . . . , An−1} of proper arcs, an integer k;
Output: an optimal solution S∗ to the MES problem for A;
Begin;

compute a minimum coloring S = {S0, . . . , Sχ(A)−1} of A;
S ← Refine-Coloring(S, k), S∗ ← ∅;
if all the stables of S have a size at most k then S∗ ← S;
else

if n is not a multiple of k then
extract from any stable of S one stable S′ of size n mod k;
add S′ to S∗ and remove from A the arcs of S′ (n ← n− n mod k);
number the remaining arcs in A from 0 to n− 1 in the circular order;

S0 ← · · · ← Sn/k−1 ← ∅;
for i from 0 to n− 1 do

u ← i mod n/k, Su ← Su ∪ {Ai};
S∗ ← S∗ ∪ {S0, . . . , Sn/k−1};

return S∗;
End;

According to Lemma 3.2, two different cases arise having refined the coloring
S: (a) all the stables have a size lower than k (i.e., χ(A) ≥ dn/ke), (b) all the
stables have a size greater than k and at least one has a size strictly greater
than k (i.e., χ(A) < dn/ke). In the case (a), the coloring S forms a trivial
solution to the MES problem. Now, let us analyse the case (b). First, note that
extracting one stable S ′ of size n mod k < k from any stable of S is possible
since all have a size greater than k. In the same way, it is easy to verify that all
the stables S0, . . . , Sn/k−1 have a size at most k by construction. Now, suppose
that two arcs Ai, Aj ∈ A are intersecting in a stable Su (0 ≤ u ≤ n/k − 1).
According to the algorithm, we have i = u + α · n/k and j = u + β · n/k
with α 6= β. Here we consider the case α < β; the proof of the other case
is similar. When the arcs are proper, clockwise endpoints appear in the same
order as counterclockwise endpoints. Hence, all the arcs Ai, Ai+1, . . . , Aj−1, Aj

contain the portion ]ccw(Aj), cw(Ai)[ of the circle, inducing a clique of size
j − i + 1 = (β − α) · n/k + 1 > χ(A), which is a contradiction. Consequently,
the set S∗ forms a partition of A into stables of size at most k; since dn/ke is
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a lower bound for χ(A, k), this one has a minimum cardinality.

To conclude, the complexity of the algorithm is addressed. A minimum col-
oring of A is computed in O(n1.5) time when the arcs are ordered [41]. The
complexity of the remainder of the algorithm is dominated by the complexity
of the procedure Refine-Coloring. In the proof of Lemma 3.2, we have
proved that this procedure stops after χ(A) loops in the worst case. The con-
nected components of the bipartite graph induced by Su and Sv is determined
in O(|Su|+ |Sv|) time and space by sweeping the arcs of Su∪Sv in the circular
order (the order on Su ∪ Sv is obtained by merging the orders on Su and Sv).
Correctly implemented, the exchange of vertices between components is done
in O(|Su| + |Sv|) time and space too. To summarize, the algorithm Refine-
Coloring runs in O(χ(A) n) time and O(n) space in the worst case.

Proposition 3.3 The algorithm MES-Proper-Circular-Arcs computes
an optimal solution to the MES problem in O(n2) time and O(n) space, given
an ordered set A of n proper arcs in input.

Corollary 3.4 Let G be a proper circular-arc graph. Then, the equality

χ(G, k) = max{χ(G), dn/ke}

holds for all integers k ≥ 1.

Since an ordered proper circular-arc representation is computed in linear time
and space [13], we have the following corollary.

Corollary 3.5 The MES problem is solved in O(n2) time and linear space for
proper circular-arc graphs.

3.2 A linear-time algorithm for the case k = 2

In this section, a linear-time and space algorithm is proposed to solve the
2-MES problem for proper circular-arc graphs. Similarly to the general case,
the algorithm works on an ordered proper circular-arc representation A =
{A1, . . . , An}. Here are described the broad lines of the algorithm.

Having computed a maximum clique C in A, two cases are considered. If the
maximum clique is not too large (i.e., ω(A) ≤ bn/2c), then a maximum disjoint
matching in A is greedily computed. Otherwise (i.e., ω(A) > bn/2c), the arcs
of the clique C are divided into two categories: the α-arcs and the β-arcs.
Denote by ci the arc having the smallest counterclockwise endpoint in C and
cj the arc having the largest counterclockwise endpoint in C which contains
cw(ci). Some arcs may exist in C containing clockwise the endpoints cw(cj)
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Fig. 6. The α-arcs and β-arcs of a clique.

and ccw(ci) (see Fig. 6). These arcs are called β-arcs, and on the opposite, all
the other arcs of C are called α-arcs (including those which contain neither
the endpoint cw(ci), nor the endpoint cw(cj)). Note that the status of the arcs
of C depends on the representation of the graph. The sets of α-arcs and β-arcs
of C are respectively denoted by Cα and Cβ (|C| = |Cα|+ |Cβ|). The two sets
Cα = {α1, . . . , αu} and Cβ = {β1, . . . , βv} are ordered as follows: the first arc
of the set contains the counterclockwise endpoints of all the other arcs and
the next arcs are arranged clockwise. Then, the set of arcs of A \ C which
are candidates to match with arcs of Cα (resp. Cβ) are denoted by m(Cα)
(resp. m(Cβ)). In the case ω(A) > bn/2c, a maximum matching is obtained
by performing a maximum disjoint matching between arcs of Cα and m(Cα),
and then between arcs of Cβ and m(Cβ). Next, we show how to determine
efficiently these two matchings.

Algorithm 2-MES-Proper-Circular-Arcs;
Input: an ordered set A = {A1, . . . , An} of proper arcs;
Output: an optimal solution M to the 2-MES problem for A;
Begin;

compute a maximum clique C of A;
M← ∅;
if ω(A) ≤ bn/2c then

for i from 1 to bn/2c do M←M∪ {(Ai, Adn/2e+i)};
if n is odd then add to M the arc Adn/2e which remains unmatched;

else
compute the sets Cα and Cβ;
compute a maximum matching Mβ between the arcs of Cβ and m(Cβ);
compute a maximum matching Mα between the arcs of Cα and m(Cα);
M←Mα ∪Mβ;

return M;
End;

The computation of a maximum clique takes O(n) time and space when the
arcs are proper and ordered [4,38]. Then, computing M, which is easily done
in linear time when ω(A) ≤ bn/2c, seems to be more complicated in the case
ω(A) > bn/2c. The following lemma shows that the matchings Mα and Mβ
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are easy to obtain too. Let Bα = (X, Y, E) be the bipartite graph with X = Cα,
Y = m(Cα) and E = {(αj, Ai) |αj ∈ Cα, Ai ∈ m(Cα) and αj ∩ Ai = ∅}. The
bipartite graph Bβ is defined in the same way with the sets Cβ and m(Cβ).

Lemma 3.6 The bipartite graphs Bα and Bβ are convex. Moreover, the in-
tervals defining the neighborhood of each vertex x ∈ X in the linearly ordered
set Y are proper.

Proof. The assertion is only proved for the bipartite graph Bα, the proof
is symmetric for Bβ. The arcs of Cα and m(Cα) are ordered so that their
endpoints appear clockwise. Now, consider the neighborhood of a vertex of
X corresponding to the arc αj ∈ Cα (1 ≤ j ≤ u). Denote by aj the smallest
index of an arc m ∈ m(Cα) such that ccw(m) /∈ αj and bj the largest index
of an arc m ∈ m(Cα) such that cw(m) /∈ αj. Then, observe that the interval
[aj, . . . , |m(Cα)|]∩ [1, . . . , bj] corresponds to the indices of arcs in m(Cα) which
are matchable to αj. If aj ≤ bj, then this interval is not empty and corresponds
exactly to [aj, . . . , bj], which establishes the convexity of Bα. To conclude,
consider two arcs αj, αj′ ∈ Cα with j < j′. Since the arcs are proper, we have
aj ≤ aj′ and bj ≤ bj′ , which implies that the intervals [aj, . . . , bj] defining the
neighborhood of each vertex αj ∈ Cα in m(Cα) are proper. 2

According to this lemma, a maximum matching Mα is determined in O(n)
time and space by sweeping the arcs of Cα and m(Cα), having arranged them
clockwise (the maximum matching Mβ can be determined similarly):

Algorithm Compute-Mα;
Input: the ordered sets Cα = {α1, . . . , αu} and m(Cα) = {m1, . . . , mu′};
Output: the set Mα;
Begin;
Mα ← ∅, j ← 1;
for i from 1 to u do

while j ≤ u′ and αi ∩mj 6= ∅ do j ← j + 1;
if j ≤ u′ then Mα ←Mα ∪ {(αi, mj)};
else Mα ←Mα ∪ {(αi)};

return Mα;
End;

Now, the correctness of the entire algorithm is established. First, consider the
case ω(A) ≤ bn/2c and remind that the arcs of A are ordered.

Lemma 3.7 If ω(A) ≤ bn/2c, then the set M forms an optimal solution to
the 2-MES problem for A.

Proof. Suppose that the set M is such that two arcs Ai and Adn/2e+i (1 ≤
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i ≤ bn/2c) are intersecting. Two proper arcs can not overlap from both sides
of the circle [24, pp. 191–192]. Thus, we have either cw(Ai) ∈ Adn/2e+i, or
ccw(Ai) ∈ Adn/2e+i. When the arcs are proper, the order of counterclockwise
endpoints is the same than the order of clockwise endpoints. In the first case,
this implies the intersection of all the arcs between Ai and Adn/2e+i in the
circular order, and in the second case, the intersection of all the arcs Adn/2e+i

and Ai. In both cases, the existence of a clique of size bn/2c+1 is shown, which
contradicts the initial hypothesis. Since dn/2e is a lower bound for χ(A, 2),
the set M has a minimum cardinality. 2

Then, consider the case ω(A) > bn/2c. To make the proof clearer, we introduce
two subsets of Cα, namely Cα′ and Cα′′ (see Fig. 7). The set Cα′ (resp. Cα′′)
contains the arcs α1, . . . , αi (resp. αj, . . . , αu) with i (resp. j) the largest (resp.
smallest) index of an α-arc which does not contain the point ccw(β1) (resp.
cw(βv)). We can easily observe that the sets Cα′ and Cα′′ are disjoint (i < j).
As previously, the set m(Cα′) (resp. m(Cα′′)) is defined as the arcs which are
candidates to match with the arcs of Cα′ (resp. Cα′′).

m(Cα′′)

Cα′′

m(Cα′)

0

βv

β1

βv

β1

α1

αi

αj

αu

Cβ

Cα′

Fig. 7. The clique sets Cα′ , Cα′′ , Cβ.

Lemma 3.8 The three following sets induce each one a clique: m(Cβ) ∪ Cα,
m(Cα′)∪Cα′′ ∪Cβ, m(Cα′′)∪Cα′ ∪Cβ. Moreover, m(Cα) = m(Cα′)∪m(Cα′′).

Proof. First, we show that the set Cα ∪m(Cβ) induces a clique. According
to the definition of Cβ, all arc of m(Cβ) must be included in the portion
]ccw(α1), cw(αu)[ of the circle. Since the arcs are proper, any arc of m(Cβ)
contains the portion ]ccw(αu), cw(α1)[ of the circle and Cα ∪ m(Cβ) induces
well a clique.

Then, we demonstrate that any arc of m(Cα′) (resp. m(Cα′′)) induces a clique
with the arcs of Cα′′ ∪Cβ (resp. Cα′ ∪Cβ). Any arc m(Cα′) (resp. m(Cα′′)) can
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not be included in the portion ]ccw(β1), cw(βv)[ of the circle (otherwise this one
is strictly contained in an arc of Cβ). Such an arc can not have its two endpoints
included in the portion ]ccw(α1), cw(αu)[ of the circle too. Consequently, any
arc of m(Cα′) (resp. m(Cα′′)) contains clockwise (resp. counterclockwise) the
points ccw(β1), cw(αj), ccw(βv), cw(αu) (resp. the points cw(βv), ccw(αi),
cw(β1), ccw(α1)), which allows to conclude.

Following the previous discussion, any arc which does not intersect an arc
among αi+1, . . . , αj−1 is necessarily contained either in β1 or in βv, which is
a contradiction. Thus, no arc can be matched to arcs αi+1, . . . , αj−1 of Cα,
implying that m(Cα) = m(Cα′) ∪m(Cα′′). 2

Now, we are ready to establish that the set M = Mα ∪ Mβ forms well a
maximum disjoint matching in A.

Lemma 3.9 The sets m(Cα′), m(Cα′′) and m(Cβ) are disjoint. Moreover, all
arcs in m(Cα′), m(Cα′′) and m(Cβ) are matched.

Proof. The first assertion follows immediately from the previous lemma. Now,
we establish that all arcs in m(Cα′) are matched; the proof is similar for
sets m(Cα′′) and m(Cβ). According to the celebrated Hall’s marriage theorem
[14, pp. 35–37], all arcs in m(Cα′) are matched if and only if for any subset
S ⊆ m(Cα′), |S| ≤ |N(S)| with N(S) the neighborhood of S. Thus, we show
that the Hall condition holds for the bipartite graph induced by Cα′ and
m(Cα′). Assume on the contrary that a set S ⊆ m(Cα′) exists such that
|S| > |N(S)|. Since all arcs in S intersect all arcs in Cα′ \ N(S) (according
to the definition of N(S)) and S ∪ Cα′′ ∪ Cβ forms a clique (according to
Lemma 3.8), we observe that the set S ∪ (Cα′ \ N(S)) ∪ Cα′′ ∪ Cβ induces a
clique of size strictly greater than ω(A), which is a contradiction. 2

Remark 3.10 Following the previous discussions, we can observe that for
any proper circular-arc graph, a maximum clique C = Cα ∪ Cβ exists such
that m(Cβ) = ∅. Such a maximum clique, which can be viewed as standard, is
simply obtained by replacing each arc βj ∈ Cβ by the arc m ∈ m(Cβ) to which
βj is matched (if one exists).

Proposition 3.11 The algorithm 2-MES-Proper-Circular-Arcs com-
putes in O(n) time and space an optimal solution to the 2-MES problem, given
an ordered set A of n proper arcs in input.

Corollary 3.12 Let G be a proper circular-arc graph. If ω(G) ≥ dn/2e, then
ω(G) = χ(G). Hence, the equality χ(G, 2) = max{ω(G), dn/2e} holds.
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Since an ordered proper circular-arc representation is computed in linear time
and space from a proper circular-arc graph [13], we also obtain the following
corollary.

Corollary 3.13 The 2-MES problem is solved in linear time and space for
proper circular-arc graphs.

4 Mutual exclusion scheduling with tolerance graphs

Bodlaender and Jansen [7] have established the NP-hardness of MES for
interval graphs by performing a reduction from the problem Numerical 3-D
Matching [16]. This kind of reduction was previously employed by Jansen
[30] to show the hardness of a scheduling problem restricted to interval orders.
In our turn, we are inspired from this technique to prove that 3-MES remains
NP-hard for a subclass of tolerance graphs closed to the class of interval
graphs. The proposition extends the result of Lonc [37] who established that
3-MES is NP-hard for complements of comparability graphs.

Proposition 4.1 The 3-MES problem remains NP-hard for bounded toler-
ance graphs, even if every cycle of length greater than or equal to five has two
chords.

Proof. An instance of Numerical 3-D Matching is given by three disjoint
sets W = {w1, . . . , wm}, X = {x1, . . . , xm} and Y = {y1, . . . , ym} containing
each one m elements, the size s(a) ∈ N of each element a ∈ W ∪ X ∪ Y ,
and a bound Z such that

∑
a∈W∪X∪Y s(a) = mZ. The question is to decide if

W∪X∪Y admits a partition into m disjoint sets {Ai}i=1,...,m such that each one
contains exactly one element from each set W , X and Y and

∑
a∈Ai

s(a) = Z
for 1 ≤ i ≤ m. The problem remains NP-hard if 0 < s(a) < Z/2 for all
a ∈ W ∪X ∪ Y and 1 < m < Z. This is proved by transforming the original
problem into another one where the assertion is verified. For this, add the
value Z + m to each a ∈ W ∪X ∪ Y and setting Z ′ = Z + 3(Z + m).

Given an instance Numerical 3-D Matching, a graph is built correspond-
ing to an instance of the 3-MES problem. This graph is represented by a set
of intervals, having each one a tolerance. All the intervals are open and their
endpoints are integer; all the tolerances are bounded and integer. Thus, the
subjacent graph is a bounded tolerance graph. Later, we shall show that any
cycle of length greater than or equal to five in this graph always has two
chords. Here is the set of intervals in question:

(1) for each 1 ≤ i ≤ m, set m intervals ai,l =]0, i+1[ with tolerance t(ai,l) = 0;
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(2) for all pairs wi ∈ W , xj ∈ X, set one interval bi,j =]i+1, wi +xj + jZ +1[
with tolerance t(bi,j) = 0;

(3) for all pairs xj ∈ X, yk ∈ Y , set one interval cj,k =](j +1)Z−yk +1, (m+
3)Z + k + 1[ with tolerance t(cj,k) = 2k + 1;

(4) for each 1 ≤ k ≤ m, set (m−1) intervals dk,l =](m+3)Z−k, (m+5)Z+1[
with tolerance t(dk,l) = 2k + 1;

(5) for each 1 ≤ j ≤ m, set (m − 1) intervals hj,l =]0, jZ + 1[ and (m − 1)
intervals gj,l =](j +1)Z, (m+3)Z +1[ with tolerance t(gj,l) = t(hj,l) = 0.
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Fig. 8. An example of construction.

An example of construction is given on Fig. 8 with w1 = 1, w2 = 2, x1 = 1,
x2 = 1, y1 = 2, y2 = 3 and Z = 5, m = 2. The sets of intervals ai,l is denoted by
the letter A; in the same way, the sets B, C, D, G,H are defined. Some of these
sets induce a clique independently of the instance considered: A ∪H, B ∪H,
C ∪G, D∪G. The intervals of sets A,B, G,H tolerate no intersection and all
the intervals of C (resp. D) overlap the portion [(m + 1)Z + 1, (m + 3)Z + 1)]
(resp. [(m + 3)Z, (m + 5)Z]) of the line, whose length is greater than the
maximum of their tolerances (2Z > 2m + 1). Note that any stable is of size
at most four in this graph. The cardinality of the different sets is given by
|A| = |B| = |C| = m2 and |D| = |G| = |H| = m(m− 1). On the whole, there
are 6m2 − 3m intervals. Thus, the problem consists in finding a partition of
the graph into 2m2−m stables of size at most three, which turns to determine
an optimal solution to the 3-MES problem for this graph. In fact, each stable
of the partition must be of size exactly three.

Let us consider a stable U of size three which contains an interval h ∈ H.
The only way to complete this stable U is to choose an interval c ∈ C and
an interval d ∈ D. In the same way, for a stable U which contains g ∈ G, we
can only take an interval b ∈ B and an interval a ∈ A. Having removed these
intervals, only m elements remain in A, B and C. Now, the composition of the
stables which belong to an optimal solution is detailed. For this, we analyse
the possible (disjoint) matchings between intervals coming from the following
sets: A and B, B ∪H and C ∪G, C and D.
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Case (a): the sets A and B. These two sets contain each one m2 intervals.
According to the previous discussion, each interval from A must be matched
to an interval from B in an optimal partition into stables of size three. We show
that the vertices ai,l ∈ A and bi′,j ∈ B belong to the same stable if and only
if i = i′. In other words, an optimal partition can not contain some stable U
with {ai,l, bi′,j} ⊂ U if i 6= i′. Let us suppose the contrary. We have m2 stables,
each one containing an element from A and an element from B. Let ai,l ∈ A
be the interval of smallest index i which belongs to a stable containing an
interval bi′,j with i 6= i′. If i > i′, then the intervals in question are intersecting
by construction, which leads to a contradiction. Now, let us see the case i < i′.
According to the hypothesis, the intervals of A having an index lower than i
are correctly matched to an interval of B. Among the m intervals of B having
as first index i, at least one exists which is matched to an interval ai′′,l′ with
i′′ > i. Since these intervals are intersecting by construction, we still obtain a
contradiction.

Case (b): the sets B∪H and C ∪G. These two sets contain each one 2m2−m
intervals and induce each one a clique. Consequently, any stable of an optimal
partition must include one element of B∪H and one element of C∪G. Having
observed that the interval bi,j overlaps the interval gj′,l if j′ < j and the interval
cj,k overlaps the interval hj′,l if j′ > j, we fall into the same situation as in
the case (a) and prove in a similar way that any pair of intervals {bi,j, cj′,k},
{bi,j, gj′,l} or {hj,l, cj′,k} belongs to a same stable of an optimal partition if and
only if j = j′.

Case (c): the sets C and D. For all pairs cj,k and dk′,l of intervals, we have |cj,k∩
dk′,l| = k + k′ + 1. Since the tolerances of these two intervals are respectively
equal to 2k+1 and 2k′+1, these ones are matchable only if k+k′+1 ≤ 2k+1
and k + k′ + 1 ≤ 2k′ + 1, that is, only if k = k′.

first interval second interval

ai,− bi,−

b−,j or hj,− cj,− or gj,−

c−,k dk,−

Fig. 9. Summary of the analysis of cases (a), (b) and (c).

The results of the analysis of cases (a), (b) and (c) are summarized on Fig. 9.
Each row of the table represents the pairs of intervals contained by the stables
of an optimal partition for 3-MES. For example, the first line means that no
stable exists which contains some intervals {ai, bi′,l} with i 6= i′. Then, remove
from an optimal solution all the stables U containing h ∈ H or g ∈ G. Since
each interval gj,− (resp. hj,−) is matched to an interval b−,j (resp. cj,−), one and
only one interval b−,j (resp. cj,−) remains in B (resp. C) for all j = 1, . . . , m.
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In the same way, the stables which contain the intervals of G and of B (resp.
of H and of C) are necessarily completed by some intervals of A (resp. D).
Consequently, one interval ai,l remains for all i = 1, . . . , m too, but no interval
of D (because this one has the same cardinality than H). Finally, only m
stables Ui = {ai, bi,j, cj,k} remain after suppression of all the stables U . We
are now able to prove that there exists a partition of W ∪ X ∪ Y into m
sets {Ai}i=1,...,m, each one containing an element of W , X and Y such that∑

a∈Ai
s(a) = Z, if and only if the tolerance graph admits a partition into

2m2 −m stables of size three.

Let U1, . . . , U2m2−m be such a partition. According to the previous discussion,
we can admit without loss of generality that the first m stables of the partition
have the form Ui = {ai,l, bi,j, cj,k} in such a way that each index i, j or k
appears one and only one time (1 ≤ i, j, k ≤ m). Since Ui is a stable, we have
wi+xj+jZ+1 ≤ (j+1)Z−yk+1, and then wi+xj+yk ≤ Z. Because each index
appears exactly one time, we obtain that

∑m
i=1 wi +

∑m
j=1 xj +

∑m
k=1 yk = mZ.

Thus, wi + xj + yk = Z and the sets Ai = {wi, xj, yk} defined from stables Ui

form a solution to the problem Numerical 3-D Matching.

Let us prove the reverse implication. Let Ai = {wi, xj, yk} be the m sets such
that

∑
a∈Ai

s(a) = Z (1 ≤ i ≤ m). Given these m sets, we shall construct an
optimal partition of the tolerance graph into stables of size at most three. First,
for all i = 1, . . . , m, define one stable Ui = {ai,l, bi,j, cj,k}. Clearly, the intervals
ai and bi,j are not intersecting, as well as the intervals bi,j and cj,k (the equality
wi +xj +yk = Z implies that wi +xj + jZ +1 ≤ (j +1)Z−yk +1). Thus, each
set Ui induces well a stable. Now, denote by B′ the set of vertices of B which
is not covered by the stables Ui. For each bi,j ∈ B′, define a set which contains
the intervals ai,l, bi,j and gj,l′ . Clearly, such a set induces a stable. Moreover,
the construction is correct since each index i or j appears only (m−1) times in
B′. Finally, denote by C ′ the set of vertices of C which remain uncovered and
define a set which contains the vertices hj,l, cj,k, dk,l′ for each cj,k ∈ C ′. The
tolerances of intervals cj,k and dk,l′ are such that the corresponding vertices
in the tolerance graph are not connected. On the other hand, intervals dk,l′

can not overlap intervals of hj,l. Consequently, such sets induce stables too.
Finally, all the vertices are partitioned into 2m2 −m stables.

The NP-hardness of the 3-MES problem is established for bounded tolerance
graphs. To close definitively the proof, we show that every cycle of length
greater than or equal to five in the graph has two chords. The only ver-
tices suitable to violate the condition in question are those having a tolerance
strictly greater than zero, that is, those of C ∪D. In effect, the subgraph in-
duced by all the intervals excepted those of C (resp. D) is clearly an interval
graph and then contains no chordless cycle of length greater than or equal to
four. Now, assume the existence of a cycle induced by vertices of C ∪D which
does not verify the condition. A cycle of length greater than or equal to five
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always contains at least three vertices either from C, or from D. If it contains
four or more, then these ones induce at least two chords (because the sets C
and D are some cliques). The situation is the same if the cycle contains three
vertices of C (resp. D) not appearing consecutively on the cycle. Consequently,
one case remains to tackle: the cycle contains exactly three vertices of C (resp.
D) such that these ones appear consecutively on the cycle. Without loss of
generality, assume that these three vertices belong to the set C and denote by
{cj1,k1 , cj2,k2 , cj3,k3 , dk4,l4 , dk5,l5 , cj1,k1} the cycle in question. Since the set C is a
clique, the vertices cj1,k1 and cj3,k3 are connected by a chord. According to the
analysis of case (c), the vertices cj,k ∈ C and dk′,l ∈ D of the tolerance graph
are not connected if and only if k = k′. Since the vertex cj1,k1 is connected to
dk5,l5 but not to dk4,l4 , we obtain that k1 6= k5 and k1 = k4 (symmetrically, we
have with the vertex cj3,k3 that k3 = k5 and k3 6= k4). Hence, we deduce that
k4 6= k5, and that the vertex cj2,k2 is necessarily connected to one of the two
vertices dk4,l4 or dk5,l5 , which completes the proof. 2

The graphs aimed by Proposition 4.1 satisfy the following conditions: every
cycle of length greater than or equal to five has two chords and the comple-
ment graph is transitively orientable. Indeed, complements of bounded toler-
ance graphs are comparability graphs (see [8,25]). On the other hand, interval
graphs are exactly the graphs where every cycle of length greater than or
equal to four owns one chord and the complement graph is transitively ori-
entable. The graphs aimed by the proposition differ from these ones because
they induce, under certain conditions, chordless cycles of length four.

Bounded tolerance graphs (also known as parallelogram graphs) form a sub-
class of tolerance graphs, trapezoid graphs and weakly triangulated graphs.
On the other hand, Meyniel graphs are the graphs satisfying the property
that every odd cycle of length greater than or equal to five has at least two
chords. (The interested reader is referred to [8] for more details concerning
these classes of graphs.) Consequently, we have the following corollary.

Corollary 4.2 For each fixed k ≥ 3, the k-MES problem is NP-hard for
tolerance graphs, trapezoid graphs, weakly triangulated graphs and Meyniel
graphs, even if the complement graph is transitively orientable.

Remark 4.3 Whereas the k-MES problem is solvable in polynomial time for
perfect graphs of stability at most k, the proof of Proposition 4.1 provides that
the problem becomes NP-hard for bounded tolerance graphs of stability at least
k + 1.
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5 Conclusion

The following tables summarize all the results presented throughout the paper
about the complexity of the mutual exclusion scheduling problem for interval
graphs, circular-arc graphs and tolerance graphs.

Proper interval graphs Threshold graphs Interval graphs

k = 2 O(n + m) O(n + m) O(n + m)

k = 3 O(n + m) O(n + m) open

k ≥ 4 O(n + m) O(n + m) NP-hard [7]

Proper circular-arc graphs Circular-arc graphs

k = 2 O(n + m) maximum matching [23]

k = 3 O(n2) open

k ≥ 4 O(n2) NP-hard (even if perfect) [7]

Proper tolerance graphs Tolerance graphs

k = 2 maximum matching [23] maximum matching [23]

k ≥ 3 open NP-hard (even if bounded)

A cartography of the complexity of the problem is given on Fig. 10. Although
the problem remains NP-hard for many classes of (perfect) graphs, some in-
teresting questions remain open concerning the complexity of MES for interval
graphs and permutation graphs when k is a small fixed parameter. Another
topic is the complexity of MES for proper tolerance graphs, as well as for com-
plements of circular-arc graphs or complements of tolerance graphs. Finding
practical efficient algorithms (in particular linear-time algorithms) to solve the
2-MES problem for circular-arc graphs or tolerance graphs is also of interest.
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