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Abstract
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constructive and provide efficient algorithms to solve the MES problem for these
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1 Introduction

1.1 Presentation of the problem

Here is a fundamental problem in scheduling theory: n tasks must be com-
pleted on k processors in the minimum time, with the constraint that some
tasks can not be executed at the same time because they share the same
resources. When all tasks have the same processing time, the problem in ques-
tion has an elegant formulation in graph-theoretical terms. In effect, having
defined a simple and undirected graph where each vertex represents one task
and two vertices are adjacent if the corresponding tasks are in conflict, an
optimal schedule of the n tasks on k processors corresponds exactly to a min-
imum coloring of the graph such that each color appears at most k times.
This is the reason why Baker and Coffman [2] called Mutual Exclusion
Scheduling (shortly MES) the following problem:

Mutual Exclusion Scheduling
Input: a simple and undirected graph G = (V,E), a positive integer k;
Output: a minimum coloration of G where each color appears at most k times.

When k is a fixed parameter (i.e., a constant of the problem), the abbreviation
k-MES shall be used to name the problem.

In spite of few positive results, MES is NP-hard for the majority of classes of
graphs studied, even for small fixed values of k. The problem is NP-hard for
complements of line-graphs (even for fixed k ≥ 3) [7], for bipartite graphs and
cographs [5], for interval graphs (even for fixed k ≥ 4) [5], for complements of
comparability graphs (even for fixed k ≥ 3) [26], and for permutation graphs
(even for fixed k ≥ 6) [24]. To the best of our knowledge, the sole classes of
graphs for which MES problem was proved to be polynomial-time solvable are
split graphs [26,5], forests and trees [2,25], collections of disjoint cliques [35],
complements of strongly chordal graphs [10] and of interval graphs [26,5], and
bounded treewidth graphs [4].

In a previous paper [16], we have begun a detailed study of the mutual ex-
clusion scheduling problem for interval graphs as well as for two extensions,
namely circular-arc graphs and tolerance graphs. When restricted to these
classes of graphs, the problem has some applications to workforce planning.
Linear-time and space algorithms are presented to solve the MES problem re-
stricted to proper interval graphs and to threshold graphs, and the case k = 2
for interval graphs. Besides, the problem is shown to be solvable in quadratic
time and linear space for proper circular-arc graphs, as well as in linear time
and space when k = 2 for these graphs. On the other hand, the result of
Bodlaender and Jansen [5] is completed by establishing the NP-hardness of
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the 3-MES problem for bounded tolerance graphs, even if any cycle of length
greater than or equal to five in the graph has two chords.

Unfortunately, restrictions based on subclasses of interval graphs, circular-arc
graphs or tolerance graphs do not cover enough cases in practice. In this paper,
the problem is approached from a different point of view by studying a non-
trivial and practical sufficient condition for optimality in mutual exclusion
scheduling.

1.2 Preliminaries

Formally, a graph G = (V,E) is an interval graph if to each vertex v ∈ V
can be associated an open interval Iv of the real line, such that two distinct
vertices u, v ∈ V are adjacent if and only if Iu ∩ Iv 6= ∅. The family {Iv}v∈V is
an interval representation of G. The left and right endpoints of the interval Iv

are respectively denoted l(Iv) and r(Iv). The class of interval graphs coincide
with the intersection of the classes of chordal graphs and of complements of
comparability graphs [17]. A graph is chordal if it contains no induced cycle
of length greater than or equal to four; chordal graphs are also known as the
intersection graphs of subtrees in a tree [17]. Comparability graphs are the
transitively orientable graphs, they correspond to graphs of partial orders.

Circular-arc graphs and tolerance graphs are two natural extensions of inter-
val graphs. Circular-arc graphs are the intersection graphs of collections of
arcs on a circle. A circular-arc graph G = (V, E) admits a circular-arc rep-
resentation {Av}v∈V in which each arc Av is defined by its counterclockwise
endpoint ccw(Av) and its clockwise endpoint cw(Av). Note that a circular-arc
representation of a graph G which fails to cover some point p on the circle
is topologically the same as an interval representation of G [17]. A graph
G = (V, E) is a tolerance graph if to each vertex v ∈ V can be associated
an interval Iv and a positive real number t(v) referred to as its tolerance,
such that each pair of distinct vertices u, v ∈ V are adjacent if and only if
|Iu∩ Iv| > min{t(u), t(v)}. The family {Iv}v∈V is a tolerance representation of
G. When G has a tolerance representation such that the tolerance associated
to each vertex v ∈ V is smaller than the length of Iv, G is a bounded tolerance
graph. Every bounded tolerance graph is the complement of a comparability
graph [18].

A graph G is a proper interval graph if there is an interval representation of G
in which no interval properly contains another. A graph G is a unit interval
graph if there is an interval representation of G in which all the intervals
have the same length. The notion of proper or unit is defined similarly for
circular-arc graphs and tolerance graphs. Proper interval graphs and proper
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circular-arc graphs are claw-free graphs, since they do not admit the claw K1,3

as induced subgraph [17]. Another well-known subclass of claw-free graphs is
formed by line-graphs. The line-graph of a graph G, denoted by L(G), is the
incidence graph of the edges of G: the edges of G are the vertices of L(G)
and two vertices of L(G) are adjacent if their corresponding edges in G are
incident to a same vertex.

The number of vertices and the number of edges of the graph G = (V,E) are
respectively denoted by n and m throughout the paper. A complete set or
clique is a subset of pairwise adjacent vertices. The clique C is maximum if no
other clique of the graph has a size strictly greater than the one of C; ω(G)
denotes the size of a maximum clique in the graph G. On the other hand,
an independent set or stable is a subset of pairwise non-adjacent vertices and
the stability α(G) of a graph G denotes the size of a maximum stable in G.
A q-coloring of the graph G corresponds to a partition of G into q stables.
The number χ(G), which denotes the cardinality of a minimum coloring in
G, is called the chromatic number of G. By analogy, the cardinality of a
minimum coloring of G such that each color appears at most k times is denoted
by χ(G, k). A trivial lower bound for the number χ(G, k) is given by the
expression max{χ(G), dn/ke}.

All the graph-theoretical terms which are not defined here can be found in
[6,17]. For more details on these graphs and their applications, the reader can
consult the books of Roberts [28,29], Golumbic [17,18] or Fishburn [12].

1.3 The sufficient condition

In [16], the following property is implicitly demonstrated.

Proposition 1.1 Let G be a proper circular-arc graph and k an integer. If G
admits a coloring such that each color appears at least k times, then χ(G, k) =
dn/ke. Moreover, the MES problem is solved in linear time and space given
such an initial coloring in input.

This property, called repartitioning property, has a first practical interest. The
parameter k, which concerns here the number of available processors or ma-
chines, is generally small in comparison with n, the number of tasks to sched-
ule. Thus, in many cases, a simple coloring heuristic enables to obtain a parti-
tion of the conflict graph in stables of size at least k. In the context of workforce
planning, some structural properties often guarantee the existence of such a
partition. For example, this is the case when municipal bus drivers or airport
employees are planned (such cases have been encountered during the devel-
opment of the software Bamboo, edited by the firm Experian-Prologia SAS
[3]): the frequencies of buses or planes often induce some sets of consecutive
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tasks having a size greater than k (for reasonable values like k ≤ 5).

The second practical interest of such a property appears when more resources
are allocated to the completion of tasks. Indeed, having realized a perfect
scheduling of the tasks to the k processors (that is, n/k tasks are assigned
to each processor with n multiple of k), the addition of a new processor does
not necessarily save completion time because of the structure of the subjacent
conflict graph. According to the previous proposition, we obtain the following
guarantee for proper circular-arc graphs.

Corollary 1.2 Let G be a proper circular-arc graph. If G admits an exact
partition into stables of size k, then G admits an optimal partition into dn/k′e
stables of size at most k′, for all k′ < k.

In the following sections, we show that the repartitioning property is shared
by claw-free graphs, by interval graphs and circular-arc graphs, by proper tol-
erance graphs for k = 2, and by chordal graphs for k ≤ 4. Moreover, the proofs
which are given are constructive, providing some efficient algorithms to solve
the MES problem given an initial coloring satisfying the condition in input.
These results are all the more unexpected as a very simple counterexample
can be found not satisfying this property.

All the results presented here appear in the author’s thesis [14], written in
French, and have been announced in [13,15].

1.4 Counterexamples

Consider the complete bipartite graph Kk+1,k+1, with k ≥ 2 (see Figure 1). One
can observe that χ(Kk+1,k+1, k) = 4 since two vertices which belong to different
stables can not be matched. As the lower bound is dn/ke = d(2k + 2)/ke =
3, the complete bipartite graph Kk+1,k+1 does not share the repartitioning
property for any k ≥ 2.

Fig. 1. The complete bipartite graph K3,3.

Cographs, which are the graphs without a path of length four as induced
subgraph, form a subclass of bounded tolerance graph; these are also known
as the graphs of series-parallel orders. Clearly, the graph Kk+1,k+1 is a cograph
for any positive value of k. The classes of weakly triangulated graphs and of
Meyniel graphs, which are two extensions of chordal graphs, contain the graph
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Kk+1,k+1 too. (The interested reader is referred to [6] for more details about
these classes of graphs.)

From the complexity point of view, some strikes appear too. In their paper,
Bodlaender and Jansen [5] investigate the complexity of the MES problem for
bipartite graphs and show that the problem of partitioning a bipartite graph
into three stables of size at most k is NP-complete. Having observed that
the bipartite graph used for the reduction is composed of two stables of size
greater than k, we obtain the following result.

Proposition 1.3 (Bodlaender and Jansen, 1995) The MES problem for
bipartite graphs remains NP-hard, even if a coloring of the graph G where
each color appears at least k times is given in input.

2 A characterization of claw-free graphs

The graph Kk+1,k+1 do not appear as an induced subgraph into claw-free
graphs, for all k ≥ 2. But do claw-free graphs share the repartitioning prop-
erty? The next proposition shows that these graphs possess a property which
is even stronger.

This proposition, which gives an algorithmic characterization of claw-free
graphs, was established in other terms by De Werra [33] while he studied some
timetabling problems. The equitable coloring problem consists in determining
a coloring of this graph such that the number of vertices in each color class is
the same except from one (see [4] for a survey of results on this subject). As
pointed by Hansen et al. [21], there is a closed link between the equitable col-
oring problem and the mutual exclusion scheduling problem. In this section,
we unify and complete the works of De Werra [33] and of Hansen et al. [21] on
this subject. In particular, an algorithm coupled with special data structures
is given to solve the MES problem and the equitable coloring problem for
claw-free graphs, given a minimum coloring of the graph in input. In the same
time, these results provide a generalization of Corollary 2.9 and Corollary 3.4
established in [16] for proper interval graphs and proper circular-arc graphs.

Curiously, the works of De Werra [33] and Hansen et al. [21] are not mentioned
neither in the large survey recently proposed by Faudree et al. [11] on claw-free
graphs, nor in those of Jansen [24] and Bodlaender and Fomin [4] on mutual
exclusion scheduling and equitable coloring.

Proposition 2.1 (De Werra 1985, Hansen et al. 1993) For a graph G,
the following conditions are equivalent:
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(1) G is claw-free,
(2) any connected component of a subgraph induced by two disjoint stables in

G is isomorphic to a chain or an even cycle,
(3) for any subgraph G′ ⊆ G induced by n′ vertices, the equality

χ(G′, k) = max{χ(G′), dn′/ke}

is satisfied for all k ≥ 1,
(4) for any subgraph G′ ⊆ G induced by n′ vertices, G′ admits an equitable

q-coloring for all q ≥ χ(G′).

Proof. (1) ⇒ (2). Any subgraph induced by two disjoint stables is bipartite
and contains no odd cycle. This bipartite graph is also claw-free here, which
implies that all its vertices have a degree at most two. Consequently, each of
its connected components is isomorphic to a chain or an even cycle.

The implications (2)⇒ (3) and (2)⇒ (4) are only established for the graph G,
since they are immediately extended to any induced subgraph G′ by heredity
of the claw-free property.

(2) ⇒ (3). The proof relies on Lemma 3.2 established in [16] which remains
valid for claw-free graphs according to (2): given a claw-free graph G and
a positive integer k, a minimum coloring of G exists which satisfies either
(a) each color appears at least k times, or (b) each color appears at most k
times. The algorithm Refine-Coloring written below is used to obtain such
a refined coloring of G.

Algorithm Refine-Coloring;
Input: a minimum coloring S = {S1, . . . , Sχ(G)} of G, an integer k;
Output: a coloring S satisfying one of the two conditions (a) or (b);
Begin;

while two disjoint stables Su, Sv ∈ S exist such that |Su| > k and |Sv| < k do
B ← Connected-Components(Su, Sv);
while |Su| > k and |Sv| < k do

choose a connected component Br ∈ B such that |Bu
r | = |Bv

r |+ 1;
exchange the vertices of Su and Sv corresponding to Bu

r and Bv
r ;

return S;
End;

Let S = {S1, . . . , Sχ(G)} be a minimum coloring of G which has been refined
through the algorithm Refine-Coloring. If S satisfies the condition (a),
then we have immediately χ(G, k) = χ(G). Otherwise, if S satisfies the con-
dition (b), we show how to obtain a partition of G into dn/ke stables of size
at most k. Note that in this case, the inequality n > kχ(G) holds.

Let |Su| = αuk + βu be the size of a stable Su (1 ≤ u ≤ χ(G)), with αu a
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strictly positive integer and 0 ≤ βu ≤ k−1. First, extract from each stable Su

(1 ≤ u ≤ χ(G)) αu − 1 stables of size exactly k, plus one if βu = 0. After this
operation, denote by χ̄ the number of stables which remains non empty and n̄
the total number of vertices in these χ̄ stables. Clearly, each non empty stable
Su contains no more than k+βu with βu > 0 and the inequality n̄ > kχ̄ is still
verified. At the rate of one only per stable, extract now bn̄/kc−χ̄ stables of size
k, plus one of size n̄ mod k if n̄ is not a multiple of k. In this way, the number
of vertices which remain in the χ̄ stables is exactly kχ̄ and at least two stables
Su and Sv of the partition are such that |Su| > k and |Sv| < k. Consequently, a
new application of the algorithm Refine-Coloring on this partition (which
remains claw-free) enables us to obtain χ̄ stables of size exactly k. To summary,
only stables of size k have been extracted, except one of size n mod k if n is
not a multiple of k.

(2) ⇒ (4). Let S1, . . . , Sq be a q-coloring of G with q ≥ χ(G). An equi-
table q-coloring is obtained by using the algorithm Refine-Coloring hav-
ing replaced the conditions |Su| > k and |Sv| < k in the two while loops by
|Su| > dn/qe and |Sv| < bn/qc. The correctness of the algorithm is obtained
by the same arguments than for the algorithm Refine-Coloring, except
that here an equitable q-coloring is returned after q principal loops.

Since the implications (3) ⇒ (1) and (4) ⇒ (1) are straightforward (the graph
K1,3, which is 2-colorable, admits no partition into two stables of size two),
the proof of the proposition is completed. 2

2.1 Computational issues

Some complexity questions are discussed which are related to the mutual
exclusion scheduling problem and the equitable coloring problem for claw-
free graphs. We show how to implement efficiently the procedure Refine-
Coloring, which plays a central role in finding an optimal solution to the
MES problem, by using a special data structure.

We assume that the input of the algorithm is composed of the claw-free
graph G = (V, E) represented by adjacency lists, of a minimum coloring
S = {S1, . . . , Sχ(G)} represented by χ(G) arrays (the array Su containing the
vertices of color u), and of the positive integer k. Note that the size of an array
or of a list is considered to be obtainable in O(1) time.

The special data structure, called F , is an array of size n. For each vertex
i ∈ V , the cell Fi of the array has three attributes: an integer Fi.color which
represents the color of i (that is, the index of the stable which it belongs to),
an integer Fi.rank which represents the rank of i in this stable, and an array
Fi.S of size χ(G) which contains in each cell Fi.Su the list (of indices) of the
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vertices adjacent to i in the stable Su (the size of this list is given by Fi.|Su|).
According to the assertion (2) of Proposition 2.1, the number of vertices stored
in the list Fi.Su can not exceed two. Thus, the space required by the structure
F is bounded by O(χ(G)n). Filling this structure can be done in O(χ(G)n)
time, by first computing the attributes Fi.color and Fi.rank for each vertex
i ∈ V and then exploring the adjacency list associated to each vertex i ∈ V
in order to fill in the list Fi.S.

We are able to establish the complexity of the refinement algorithm. Having
identified in O(χ(G)) time two stables Su and Sv such that |Su| > k and
|Sv| < k, the algorithm calls the procedure Connected-Components which
is described now. Having stored t = min{|Su|−k, k−|Sv|} even chains having
two extremities in Su, the vertices of these two connected components are
inserted into the lists Bu or Bv, according to whether they come from Su or
Sv. Determining the t connected components is done as follows. The stable u
is scanned to find some vertices having only one neighborhood in Sv (these
vertices correspond to extremities of chains in the subgraph induced by Su and
Sv). When such a vertex is found, it is marked and the chain of which it is the
extremity is traversed. If the length of this chain is even, then these vertices
are stored into the structure B = Bu ∪ Bv. All this work takes O(|Su| + |Sv|)
time and space thanks to the structure F which allows to obtain in O(1) time
the neighborhood of a vertex of the bipartite graph induced by Su ∪ Sv.

The exchange of vertices between stables is done as follows. First, the vertices
to exchange are marked into the arrays Su and Sv from the sets of vertices
Bu∪Bv (this takes O(|Su|+ |Sv|) time by using the field rank of the structure
F ). For each vertex i ∈ V , we can now proceed to the exchange of vertices in
the lists Fi.Su and Fi.Sv. Since scanning these lists takes a constant time, the
exchange is performed in O(1) time (by using the field rank of the structure F
and the marks on the vertices to exchange in Su and Sv). Then, the arrays Su

and Sv can be updated in O(|Su|+ |Sv|) time, as well as the fields Fi.color and
Fi.rank of the exchanged vertices i ∈ V . Consequently, the complete update
of the structure F is done in O(n) time.

To summary, the use of the structure F , whose construction requires O(χ(G)n)
time and space, allows to implement the principal loop of the algorithm
Refine-Coloring so as to consume only O(n) time and space at each itera-
tion. Since χ(G) iterations suffice to refine a coloring, the algorithm Refine-
Coloring runs in O(χ(G)n) time and space. By adjoining this result to the
constructive proof of the implication (2) ⇒ (3) of Proposition 2.1, we obtain
the following results.

Proposition 2.2 The MES problem is solved in O(χ(G)n) time and space
for claw-free graphs, given a minimum coloring of the graph G in input.
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Corollary 2.3 The MES problem is solved in O(n2/k) time and space for
claw-free graphs, given a coloring of the graph G where each color appears at
least k times in input.

Corollary 2.4 The equitable coloring problem is solved in O(qn) time and
space for claw-free graphs, given a q-coloring of the graph G in input.

Remark 2.5 Remind that the MES problem as well as the equitable coloring
problem are NP-hard for claw-free graphs, since finding a minimum coloring
is NP-hard for line-graphs [22].

2.2 Applications

Here are some applications of the previous results. Since the minimum coloring
problem is solved in O(n4) time for perfect claw-free graphs [23], we obtain
the following corollary.

Corollary 2.6 The MES problem is solved in O(n4) time and O(n2) space
for perfect claw-free graphs.

Now, some corollaries are given concerning the MES problem for line-graphs, a
well-known subclass of claw-free graphs. The MES problem restricted to line-
graphs can be viewed as the problem of determining a minimum coloring of
the edges of a graph such that each color appears at most k times (two edges
incident to a same vertex require different colors). Edge-coloring problems
have important real-life applications in timetabling and scheduling [32–35].
The line-graph of G is denoted by L(G), whereas n, m and ∆(G) denotes
respectively the number of vertices, the number of edges and the maximum
degree of G.

Corollary 2.7 Let G be a graph and k an integer. If ∆(G) ≥ dm/ke, then
∆(G) ≤ χ(L(G), k) ≤ ∆(G) + 1 and the MES problem for L(G) is NP-hard.
Otherwise, χ(L(G), k) = dm/ke and the MES problem for L(G) is solved in
polynomial time and space.

Proof. Transposing the assertion (3) of Proposition 2.1 to the line-graph of G
gives χ(L(G), k) = max{χ(L(G)), dm/ke}, whereas Vizing’s Theorem (cf. [9,
p. 103–105]) provides the inequalities ∆(G) ≤ χ(L(G)) ≤ ∆(G) + 1. Then,
when ∆(G) < dm/ke, we obtain χ(L(G), k) = dm/ke and the constructive
proof of Vizing’s Theorem coupled with Proposition 2.2 gives a polynomial-
time algorithm for determining a partition into dm/ke stables of size at most
k. Otherwise, we have χ(L(G), k) = χ(L(G)) (which implies immediately
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∆(G) ≤ χ(L(G), k) ≤ ∆(G) + 1) and the problem is NP-hard according
to Hoyler’s Theorem [22]. 2

Remark 2.8 When k is a constant of the problem, Alon [1] has shown that
the MES problem is solvable in polynomial-time for line-graphs. On the other
hand, Cohen and Tarsi [7] have established that the MES problem is NP-hard
for complements of line-graphs, even if k is a constant greater than or equal
to three.

Corollary 2.9 If a graph G contains no induced cycle of length greater than
or equal to five, then the MES problem for L(G) is solved in polynomial time
and space. Moreover, the equality χ(L(G), k) = max{∆(G), dm/ke} holds.

Proof. Trotter [30] has shown that the line-graph L(G) of a graph G is perfect
if and only if G contains no induced cycle of length greater than or equal to
five (see also [27,31]). Since a minimum coloring can be found in polynomial
time and space for perfect graphs [19], the result follows from Proposition 2.2.
In addition, when L(G) is perfect, we have ∆(G) = χ(L(G)). 2

A graph is weakly triangulated if and only if itself or its complement contain
no induced cycle of length greater than or equal to five. Then, the following
result holds.

Corollary 2.10 The MES problem is solved in polynomial time and space for
line-graphs of weakly triangulated graphs.

Remark 2.11 For example, bipartite graphs satisfy the conditions of the two
previous corollaries. Note that for these ones, the result can be directly deduced
from König’s Theorem and its constructive proof (cf. [9, p. 103]).

3 Sufficiency for interval and circular-arc graphs

Interval graphs contain no induced subgraph Kk+1,k+1 for any k ≥ 2. Indeed,
interval graphs are chordal and then admit no induced cycle of length greater
than or equal to four. But do they share the repartitioning property?

In this section, we give a positive answer to this question, providing in ad-
dition a linear-time and space algorithm to solve the MES problem given a
coloring where each color appears at least k times in input. Besides, the result
is extended to circular-arc graphs. Remind that the MES problem remains
NP-hard for these two classes of graphs, even for fixed k ≥ 4 [5]. To conclude
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the section, the extension of the repartitioning property is discussed for proper
tolerance graphs.

3.1 The case of interval graphs

Lemma 3.1 (Repartitioning Lemma) Let S1, . . . , Sr be r disjoint stables
each one containing at least t intervals (1 ≤ r ≤ t) and β1, . . . , βr r positive
integers such that

∑r
u=1 βu = t. Then, a stable S∗ of size t exists such that for

all u = 1, . . . , r, exactly βu intervals of S∗ belong to Su. Moreover, this stable
S∗ is extracted in O(rt) time, given the intervals of each stable ordered.

Proof. The proof is constructive: an algorithm is given which finds the stable
S∗ in O(rt) time. The input of this algorithm consists of the r disjoint stables
S1, . . . , Sr, each one of size at least t, and the r integers β1, . . . , βr. We assume
that the open intervals of each stable are ordered according to increasing left
endpoints (the interval of rank j in Su is denoted by Iu,j). The algorithm
proceeds as follows: the interval of rank j in S∗ is selected as the one having
the smallest right endpoint among the intervals of rank j in the stables Su

(where βu intervals have not been selected yet).

Algorithm Repartition-Intervals;
Input: the stables S1, . . . , Sr of size at least t, the integers β1, . . . , βr;
Output: the stable S∗;
Begin;

S∗ ← ∅;
for j from 1 to t do

u∗ ← 0;
for u from 1 to r do

if βu > 0 and (u∗ = 0 or r(Iu,j) < r(Iu∗,j)) then u∗ ← u;
S∗ ← S∗ ∪ {Iu∗,j}, βu∗ ← βu∗ − 1;

return S∗;
End;

Figure 2 illustrates the execution of the algorithm on three stables S1, S2, S3 of
size three (r = 3, t = 3 and β1 = β2 = β3 = 1). The dark intervals correspond
to intervals included in S∗ at each rank j = 1, 2, 3 (intervals which are no
more candidates to the selection at a given rank are hachured).

Let us establish the correctness of the algorithm. The output set S∗ contains
well t intervals, because one interval is extracted at each rank j = 1, . . . , t
and the input stables are all of size at least t. Now, we show that for all
j = 1, . . . , t−1, the interval Iu,j ∈ Su included in S∗ at rank j and the interval
Iv,j+1 ∈ Sv included in S∗ at rank j + 1 are such that r(Iu,j) ≤ l(Iv,j+1). If
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Fig. 2. The algorithm Repartition-Intervals.

u = v, then the assertion trivially holds. Otherwise, suppose that l(Iv,j+1) <
r(Iu,j). As r(Iv,j) ≤ l(Iv,j+1), we obtain that r(Iv,j) < r(Iu,j). Since Iv,j+1

have been selected at rank j + 1, the interval Iv,j was necessarily a candidate
to the selection at rank j. Consequently, Iu,j was not, among the intervals
candidates at rank j, the one having the smallest right endpoint, which is a
contradiction. 2

Proposition 3.2 Let G be an interval graph and k an integer. If G admits a
coloring such that each color appears at least k times, then χ(G, k) = dn/ke.
Moreover, the MES problem for G is solved in linear time and space, given
such an initial coloring in input.

Proof. Let S1, . . . , Sq be a partition of G into stables of size at least k. Assume
that the intervals of each stable are ordered and denote the size of the stable Su

by |Su| = αuk+βu, with αu a strictly positive integer and 0 ≤ βu ≤ k−1. First,
from each stable Su are extracted αu − 1 stables of size k, plus one if βu = 0.
Then, while r stables exist whose βu’s sum is greater than k, Repartitioning
Lemma (3.1) is applied to extract some stables of size exactly k (the conditions
of lemma are satisfied because each stable contains at least k intervals). At
the end of the process, one stable of size n mod k remains to extract if n is
not a multiple of k.

Having computed an ordered interval representation of G in linear time and
space [20] (see also [6,17] for more details on interval graph recognition), the
intervals of each stable of S1, . . . , Sq are ordered in O(n) time and space.
Thanks to careful applications of the procedure Repartition-Intervals,
the extraction of stables of size k can be done in O(qk) time on the whole,
that is, O(n) time since n > qk. 2

3.2 The case of circular-arc graphs

In the present form, Repartitioning Lemma is not extendable to circular-arcs;
the following example shows that, even restricted to unit circular-arcs, an
infinity of cases exists for which Repartitioning Lemma does not hold.

Let S1, . . . , Sr be a set of disjoint stables containing each one t open unit
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circular-arcs with βu = 1 for all u = 1, . . . , r (r, t ≥ 1). In order to define the
position of these arcs on the circle, divide the circle into t sections θ0, . . . , θt−1,
each one of length `. An arc has rank j if its counterclockwise endpoint belongs
to the section θj of the circle. The r arcs of rank j are disposed in section j,
each arc being of length ` and shifted of ε < `/t from the previous so as
to the arc of Su overlaps on one side the arcs of rank (j + 1) mod t which
belong to stables with index lower than u and on the other side the arcs of
rank (j − 1) mod t which belong to stables with index greater than u (see
Figure 3).

θ3 θ0 θ1 θ2

S1

S2

S3

S4

θ3

Fig. 3. An example of construction with r = 4 and t = 4.

Now, suppose that a stable S∗ of size t exists having one and only one arc in
each stable Su for all u = 1, . . . , r. Since none of these arcs can have the same
rank, S∗ contains one arc of rank j for all j = 1, . . . , t. Assume that the arc
A∗

1 ∈ S∗, coming from S1, is of rank j. According to the previous observation,
S∗ contains necessarily one arc of rank (j − 1) mod t from S2, . . . , Sr. But, by
definition, all arcs of rank (j − 1) mod t overlap A∗

1. Consequently, we obtain
a contradiction and no stable of size t exists in S1, . . . , Sr with the desired
property. In fact, one can prove that no stable of size t exists except S1, . . . , Sr

themselves.

Despite this negative result, one can observe that in the constructive proof
of Proposition 3.2, the stables to which Repartitioning Lemma is applied are
all of size strictly greater than k. Thus, a weaker version of Repartitioning
Lemma could be employed in this proof, where each stable would be of size
t + 1, and not of size t.

Lemma 3.3 (Weak Repartitioning Lemma) Let S1, . . . , Sr be r disjoint
stables each one containing at least t + 1 circular-arcs (1 ≤ r ≤ t) and
β1, . . . , βr r positive integers such that

∑r
u=1 βu = t. Then, a stable S∗ of

size t exists such that for all u = 1, . . . , r, exactly βu arcs of S∗ belong to
Su. Moreover, this stable S∗ is extracted in O(rt) time, given the arcs of each
stable ordered.

Proof. The proof relies on Repartitioning Lemma (3.1). Let p be a point on
the circle. For all u = 1, . . . , r, remove from each stable Su the arc which
contains p. Having removed these arcs, no arc of S1, . . . , Sr covers the point
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p any more. Consequently, the graph induced by these stables is an interval
graph and Repartitioning Lemma can be applied (each stable having a size at
most t).

Clearly, removing the arcs which cover p takes O(rt) time. Then, the procedure
Repartition-Intervals can be applied on the new set of arcs, provided that
the arcs of each stable are renumbered clockwise from the point p. Therefore,
the total time necessary to the extraction of S∗ remains in O(rt). 2

According to the previous discussion, the following proposition is established.

Proposition 3.4 Let G be a circular-arc graph and k an integer. If G admits
a coloring such that each color appears at least k times, then χ(G, k) = dn/ke.
Moreover, the MES problem for G is solved in linear time and space, given
such an initial coloring in input.

Remark 3.5 A corollary of Weak Repartitioning Lemma is that circular-arc
graphs admit no induced subgraph Kk+1,k+1 for all k ≥ 2. Unlike interval
graphs, they admit induced copies of K2,2, also known as the chordless cycle
of length four C4.

3.3 The case of proper tolerance graphs

As noticed in introduction, the graph Kk+1,k+1 belongs to the class of bounded
tolerance graphs, for any positive value of k (see Figure 4 below). However, a
question remains: does the graph Kk+1,k+1 admit a proper tolerance represen-
tation? In this last part, we answer to this question for k = 2, by demonstrat-
ing that proper tolerance graphs admit no induced copy of K3,3. On the other
hand, Repartitioning Lemma is shown to be not extendable to unit tolerance
graphs for k ≥ 3, even in its weak version.

t(I0, I1, I2) = 0

t(I5) = 5I5

I4 t(I4) = 5

I3 t(I3) = 5

I0 I1 I2

0 1 2 3 4 5

Fig. 4. A bounded tolerance representation of the graph K3,3.

Lemma 3.6 Let G be a proper tolerance graph and A,B two disjoint stables
of G each one containing three vertices. Then, a vertex in A and a vertex in
B exist which are not connected by an edge.
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Proof. Consider a proper tolerance representation of G where all the intervals
are open and write A = {a1, a2, a3} and B = {b1, b2, b3} with (i) g(a1) ≤
g(a2) ≤ g(a3) and g(b1) ≤ g(b2) ≤ g(b3) (because the intervals are proper, the
right endpoints are in the same order than the left endpoints). Without loss
of generality, we assume that g(a2) ≤ g(b2). Then, we claim that the vertices
a1 and b3 are not connected by an edge. First, the inequality d(a1)− g(b3) ≤
min{t(a1), t(b3)} is shown. Since the pairs of vertices a1, a2 and b2, b3 belong
to the same stable, we have that (ii) d(a1) − g(a2) ≤ min{t(a1), t(a2)} and
d(b2)−g(b3) ≤ min{t(b2), t(b3)}. The intervals being proper and g(a2) ≤ g(b2),
we also have that (iii) d(a1) − g(a2) ≥ d(a1) − g(b2) and d(b2) − g(b3) ≥
d(a2)− g(b3). By combining the inequalities (i), (ii) and (iii), we obtain:

d(a1)− g(b3) ≤ d(a1)− g(b2) ≤ d(a1)− g(a2) ≤ min{t(a1), t(a2)} ≤ t(a1)

d(a1)− g(b3) ≤ d(a2)− g(b3) ≤ d(b2)− g(b3) ≤ min{t(b2), t(b3)} ≤ t(b3)

Thus, the inequality d(a1)− g(b3) ≤ min{t(a1), t(b3)} is valid and our claim is
demonstrated. 2

Proposition 3.7 Let G be a proper tolerance graph. If G admits a coloring
such that each color appears at least two times, then χ(G, 2) = dn/2e. More-
over, the 2-MES problem for G is solved in linear time and space, given such
an initial coloring in input.

Remark 3.8 Such a result might be applied to solve in linear time and space
the 2-MES problem for proper tolerance graphs, as it was done for interval
graphs in [16].

Extending the previous proposition for k ≥ 3 seems to be difficult. Indeed,
the following example shows that Repartitioning Lemma is not extendable to
bounded unit tolerance graphs, even in its weak version.

M4 M4

S1

S2

S3

S4

Fig. 5. The graph N4.

Let Mk be the graph defined as the union of two sets of vertices numbered
from 1 to k such that the only non-connected pairs of vertices have identical
numbers. Now, the graph Nk is defined, for k ≥ 3, as the union of two copies
of Mk and one stable S of size k2 − 3k (see Figure 5). The graph Nk admits
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a partition S1, . . . , Sk into k stables of size k + 1, where each stable Sk is
composed of the four vertices with number k in Mk ∪Mk and of k− 3 vertices
in S. We claim that the graph Nk admits no stable S∗ of size k with one
vertex in each stable Su for all u = 1, . . . , k. Indeed, if a vertex i of S∗ belongs
to the subgraph Mk, then no other vertex of Mk can belong to S∗ (since the
sole vertex to which i is not connected in Mk belongs to the same stable than
i). Consequently, the stable S∗ must contain at least k − 2 vertices from the
subgraph Nk \ (Mk ∪ Mk) belonging to distinct stables, which is impossible
since each stable Su (1 ≤ u ≤ k) contains no more than k − 3 vertices in this
subgraph.

Ig
1

Ig
3

Ig
2

Id
3

Id
1

Id
2

p

Fig. 6. A bounded unit tolerance representation of the graph M3.

Now is described a bounded unit tolerance representation of Mk. Let p be
an integer point on the real axis and ` an integer greater than 4k. For all
i = 1, . . . , k, the two vertices with number i are respectively represented by
the intervals Ig

i =]p + i − `, p + i[ and Id
i =]p − i, p − i + `[ with tolerances

t(Ig
i ) = t(Id

i ) = 2i (see Figure 6). The set composed of intervals Ig
i (resp. Id

i )
induces a clique, because these intervals share a portion of the axis having
a length greater than 2k. Then, for any pair of intervals Ig

i and Id
i′ , we have

that |Ig
i ∩ Id

i′| = i + i′; since their tolerances are respectively 2i and 2i′, these
ones are connected by an edge only if i + i′ ≤ 2i and i + i′ ≤ 2i′, that is, if
i = i′. Consequently, this representation of Mk is correct and a bounded unit
tolerance representation of Nk can be easily deduced from it.

Thus, the weak version of the repartitioning lemma holds for proper tolerance
graphs when t = 2, but not for bounded unit tolerance graphs when t ≥ 3. By
observing that the graph M2 is isomorphic to the induced cycle C4, we deduce
that the strong version of the repartitioning lemma does not hold any more
for bounded unit tolerance graphs when t = 2.

Remark 3.9 The weak version of the repartitioning lemma holds for planar
graphs when t = 2, since any planar graph admits no induced subgraph K3,3

according to Kuratowski’s Theorem (cf. [9, pp. 80–84]). Consequently, planar
graphs share the repartitioning property for k = 2. On the other hand, the
graph N3 is planar, which stops any attempt of extension for t = 3. As for
proper tolerance graphs, the following question is asked: do planar graphs share
the repartitioning property for k ≥ 3?
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4 Sufficiency for chordal graphs

In this last section, the repartitioning property is discussed for chordal graphs.
Despite many efforts, we succeed in extending Proposition 3.2 for k ≤ 4 only.

Proposition 4.1 Let G be an circular-arc graph and k ≤ 4 an integer. If G
admits a coloring such that each color appears at least k times, then χ(G, k) =
dn/ke.

As for interval or circular-arc graphs, the proof of this proposition is based on
a repartitioning lemma. But before detailing this, here is a lemma on which
all the proofs of the section rely.

Lemma 4.2 (Local Sparsity Lemma) Let A,B be two disjoint stables of
a chordal graph. Then the subgraph induced by A and B is a forest which
contains at most |A|+ |B| − 1 edges.

Proof. The subgraph induced by A and B is chordal and then contains no
induced cycle of length greater than or equal to four. Since it is bipartite, it
also contains no induced cycle of length three. Consequently, this one is acyclic
and contains no more than |A|+ |B| − 1 edges. 2

A repartitioning lemma, in weak form and ad hoc to k ≤ 4, is established in
two parts. The first part, described below, allows to extract some stables of
size two or three when applying the repartitioning process employed in the
proof of Proposition 3.2. A vertex is d-connected (resp. exactly d-connected)
to a stable when it is connected to at least (resp. exactly) d vertices of this
stable.

Lemma 4.3 (Ad hoc Repartitioning Lemma) Let A,B, C be three dis-
joint stables of a chordal graph.

(1) If A and B are each one of size two, then a stable of size two exists with
one vertex in A and one vertex in B.

(2) If A and B are each one of size three, then a stable of size three exists
with two vertices in A and one vertex in B.

(3) If A, B and C are each one of size four, then a stable of size three exists
with one vertex in each stable A, B and C.

Proof. The proof of assertion (1) is immediate according to Local Sparsity
Lemma. Indeed, consider two vertices of A and two vertices of B. If assertion
(1) is not verified, then the two vertices of A are both connected to the two
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vertices of B. This implies that the subgraph induced by A and B must contain
four edges, whereas Local Sparsity Lemma imposes some less than three, which
is a contradiction. More directly, assertion (1) results from the fact that the
bipartite graph induced by A and B contains no induced copy of K2,2, alias
the chordless cycle C4.

The proof of assertion (2) is quite as direct. If (2) is not satisfied, the three
vertices of B are connected to at least two of the three vertices of A. Then, the
subgraph induced by these six vertices contains six edges. On the other hand,
Local Sparsity Lemma imposes some less than five, which is a contradiction.

Now suppose that no stable exists as described in assertion (3). First, we claim
that any vertex i ∈ A ∪ B ∪ C is 3-connected to at least one stable among
A,B,C. Without loss of generality, let us assume that i ∈ A contradicts this
claim. Then, at least two vertices of B and two vertices of C exist which are
not connected to i and according to Local Sparsity Lemma, one of the two
vertices of B is not connected to one the two vertices of C. Since these last
ones are not connected to i, they induce with i a stable of size three having
the desired property. This is a contradiction and the claim is demonstrated.
Now consider three vertices of A. According to the previous claim, these three
vertices are each one 3-connected to stables B or C. Consequently, at least two
of these three vertices are 3-connected to the same stable, which is impossible
without violating Local Sparsity Lemma. 2

Thereafter, we shall see how assertion (3) can be reinforced thanks to some
additional efforts (see Lemma 4.10). The second part of the repartitioning
lemma, described below, rules the extraction of stables of size four. Except
the proof of assertion (4), the demonstration of this second part requires more
efforts.

Lemma 4.4 (Ad hoc Repartitioning Lemma) Let A,B,C,D be four dis-
joint stables of a chordal graph.

(4) If A and B are each one of size four, then a stable of size four exists with
three vertices in A and one vertex in B.

(5) If A and B are each one of size four, then a stable of size four exists with
two vertices in A and two vertices in B.

(6) If A, B and C are respectively of size six, four and four, then a stable of
size four exists with two vertices in A, one vertex in B and one in C.

(7) If A, B, C and D are each one of size five, then a stable of size four
exists with one vertex in each stable A, B, C and D.

Assertion (4) follows immediately from Local Sparsity Lemma. Indeed, if no
stable of size four exists with the desired property, then each vertex of B is
connected to at least two vertices to A. Thus, the subgraph induced by A and
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B must contain at least eight edges, whereas Local Sparsity Lemma imposes
some less than seven.

To make the next proofs more readable, we need some specific definitions.
Let A,B, C,D be four disjoint stables of a chordal graph, each one of size at
least two. We call doublet in (A,B) a stable of size two with one vertex in
A and one vertex in B; by analogy, a triplet in (A,B, C) (resp. a quadruplet
in (A,B,C, D)) is a stable of size three (resp. four) with one vertex in each
stable A, B and C (resp. A, B, C and D). A square in (A,B) is a stable of
size four with two vertices in A and two vertices in B; by analogy, a quasi-
square {a, b, a′, b′} in (A,B) corresponds to the succession of the three doublets
{a, b}, {b, a′} and {a′, b′}, and becomes a square if the vertices a and b′ are
not connected (see Figure 7). Remind that the degree of a vertex i is denoted
by d(i).

a′

b b′

A

B

a

Fig. 7. A doublet, a square and a quasi-square.

Lemma 4.5 (Doublets Lemma) Let A,B be two disjoint stables of a chordal
graph. If A and B are of size at least t ≥ 2, then t− 1 disjoint doublets exist
in (A,B).

Proof. When A and B are of size t = 2, the assertion follows immediately
from Local Sparsity Lemma. For t > 2, we proceed as follows. While t ≥ 2,
we apply Local Sparsity Lemma on two stables A′ ⊆ A and B′ ⊆ B to extract
one doublet. Then, the number of extracted doublets is t− 1. 2

4.1 Proofs of assertions (5) and (6) of Ad hoc Repartitioning Lemma

Here is the lemma on which relies the proof of assertions (5) and (6). In addi-
tion, it provides another simple proof of assertion (3) of Ad hoc Repartitioning
Lemma (4.3).

Lemma 4.6 (Square Lemma) Let A,B be two disjoint stables of a chordal
graph. If A and B are each one of size at least four, then a square exists in
(A,B).
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Proof. We write A = {a1, a2, a3, a4} and B = {b1, b2, b3, b4}. Suppose that no
square exists in (A,B). This implies that for each pair of vertices ai, aj ∈ A,
the inequality d(ai)+d(aj) ≥ 3 is satisfied (otherwise, at least two vertices of B
are not connected to ai and aj and a square exists in (A,B)). Then, we deduce
that three vertices of A are of degree at least two. On the other hand, Local
Sparsity Lemma imposes that the sum of degrees of vertices in A is lower than
or equal to seven. Consequently, we set without loss of generality d(a1) ≤ 1,
d(a2) ≥ 2, d(a3) ≥ 2 and d(a4) ≥ 2. By applying Local Sparsity Lemma
to the subgraph induced by A \ {a1} and B, we also obtain the inequality
d(a2) + d(a3) + d(a4) ≤ 6 which, combined to the previous ones, gives (i)
d(a1) ≤ 1 and d(a2) = d(a3) = d(a4) = 2.

b4b3

A

B

a1 a2 a3 a4

b1 b2

Fig. 8. The chain and the square.

By symmetric arguments, we obtain that (ii) d(b1) = d(b2) = d(b3) = 2 and
d(b4) ≤ 1 for the vertices of the set B. Once joined together, conditions (i)
and (ii) force the bipartite graph induced by a and B to be isomorphic to a
chain where {a1, a2, b3, b4} forms a square (see Figure 8), which contradicts
our first hypothesis. 2

Assertion (5) of Ad hoc Repartitioning Lemma (4.4) follows immediately from
Square lemma. Here is the proof of assertion (6). Let A,B,C be three disjoint
stables of a chordal graph, respectively of size six, four and four. According
to Square Lemma, a square {b1, c1, b2, c2} exists in (B,C). Then, consider the
bipartite graph induced by this square and the stable A and suppose that
no stable of size four exists with one vertex in {b1, b2}, one vertex in {c1, c2}
and two vertices in A. Clearly, this implies that for any pair bi, cj of vertices
(1 ≤ i, j ≤ 2), the inequality d(bi)+d(cj) ≥ 5 is satisfied. By summing the four
inequalities in question, we obtain that the number of edges in the considered
bipartite graph is greater than ten. However, Local Sparsity Lemma imposes
less than nine edges, which is a contradiction.

A simple proof of assertion (3) is obtained by similar arguments. In fact, this
proof technique can be generalized into the following lemma.

Lemma 4.7 Let X = X1∪ · · ·∪Xt and Y be two disjoint stables of size 2t in
a chordal graph, where X1, . . . , Xt induce t disjoint pairs of vertices (t ≥ 1).
Then a stable of size t + 1 exists with one vertex in each set Xi (1 ≤ i ≤ t)
and one vertex in Y .
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Proof. Assume that such a stable does not exists. Then, the inequality d(x1)+
· · ·+ d(xt) ≥ 2t is satisfied for any t-tuple x1 ∈ X1, . . . , xt ∈ Xt. By summing
these inequalities for all possible t-tuples, we obtain that d(X1)+ · · ·+d(Xt) ≥
4t where d(Xi) represents the sum of degrees of vertices in Xi. On the other
hand, Local Sparsity Lemma imposes that d(X1)+ · · ·+d(Xt) ≤ 4t−1, which
contradicts the previous inequality. 2

Thus, the proof of assertion (3) corresponds to the combination of Square
Lemma and Lemma 4.7 with t = 2 (set X1 = {b1, b2}, X2 = {c1, c2} and
Y = A with {b1, b2, c1, c2} a square in (B,C)).

Remark 4.8 Assertion (6) can be reinforced in such a way that the stable A
has only size five and stables B and C remain of size four. Indeed, the bipartite
graph induced by the stable A and the square {b1, c1, b2, c2} induces a tree. After
an exhaustive search based on the maximum degree (or the diameter), a few
non-isomorphic trees are found which have all the desired property.

4.2 Proof of assertion (7) of Ad hoc Repartitioning Lemma

The proof of assertion (7), in the same spirit than the one given for assertion
(3), relies on the fact that a triplet can be extracted from three disjoint stables
of size only three. This last claim is proved according to the following lemma.

Lemma 4.9 (Quasi-square Lemma) Let A,B be two disjoint stables of a
chordal graph. If A and B are each one of size at least three, then a quasi-
square exists in (A,B).

Proof. Set A = {a1, a2, a3} and B = {b1, b2, b3}. The two following cases are
distinguishable.

b2 b3

A

B

a1 a2 a3

b1

Fig. 9. Quasi-square Lemma: case (a).

Case (a): the maximum degree of the subgraph induced by A and B is at
most two. In this case, there is only one non-isomorphic configuration which
is maximal according to the number of edges: the chain. Without loss of gen-
erality, consider the chain {a1, b1, a2, b2, a3, b3}. Then, observe that the set
{a1, a2, b2, b3} induces a quasi-square (see Figure 9).
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a3

b1 b2 b3

A

B

a1 a2 a3

b1 b2 b3

A

B

a1 a2

Fig. 10. Quasi-square Lemma: case (b).

Case (b): the maximum degree of the subgraph induced by A and B is three.
W.l.o.g., assume that the vertex a1 has a degree equal to three. According
to Local Sparsity Lemma, we obtain that the vertices a2 and a3 have each
one a degree lower than one. In this case, there are only two non-isomorphic
configurations, which are illustrated on Figure 10. Having numbered the ver-
tices of these two configurations as on this figure, we can observe that the set
{a2, a3, b1, b2} induces a quasi-square. 2

Lemma 4.10 (Triplet Lemma) Let A,B,C be three disjoint stables of a
chordal graph. If A, B and C are each one of size at least three, then a triplet
exists in (A, B, C).

Proof. Set A = {a1, a2, a3}, B = {b1, b2, b3} and C = {c1, c2, c3}. According
to the previous lemma, a quasi-square exists in (A,B). W.l.o.g., let {a1, b1, a2, b2}
be this quasi-square, with {a1, b2} the pair of vertices which may be connected
by an edge, and assume that no triplet exists in (A,B, C). We have necessarily
that (i) d(a1)+d(b1) ≥ 3, d(b1)+d(a2) ≥ 3 and d(a2)+d(b2) ≥ 3. On the other
hand, Local Sparsity Lemma imposes that (ii) d(a1) + d(b1) + d(a2) ≤ 5 and
d(b1)+d(a2)+d(b2) ≤ 5 (since the sets {a1, b1, a2} and {b1, a2, b2} induce each
one a stable). From inequalities (i) and (ii), we can deduce that 1 ≤ d(ai) ≤ 2
and 1 ≤ d(bi) ≤ 2 for i = 1, 2. In this case, there are only two non-isomorphic
configurations which are minimal according to the number of edges.

b1

c3c2c1

a1 b2a2

C

Fig. 11. Triplet Lemma: case (a).

Case (a): d(a1) = 2, d(b1) = 1, d(a2) = 2, d(b2) = 1. Assume w.l.o.g. that the
vertex a1 is connected to c1 and c2. By applying inequalities (i) in cascade, we
obtain that the pairs {b1, c3}, {a2, c1}, {a2, c2} of vertices must be connected
by an edge (see Figure 11). Then, the set {b1, c2, b2, c3} induces a chordless
cycle of length four in (B, C), which is a contradiction.
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b1

c3c2c1

a1 b2a2

C

Fig. 12. Triplet Lemma: case (b).

Case (b): d(a1) = 1, d(b1) = 2, d(a2) = 2, d(b2) = 1. Assume w.l.o.g. that
the vertex a1 is connected to c1. By applying inequalities (i) in cascade while
respecting Local Sparsity Lemma, we obtain w.l.o.g. that the pairs {b1, c2},
{b1, c3}, {a2, c1}, {a2, c2}, {b2, c3} of vertices must be connected by an edge
(see Figure 12). If the vertex a1 is connected to b2, then the subgraph induced
by {a1, b1, a2, b2} and C is isomorphic to a chordless cycle of length seven,
which is a contradiction. Otherwise, the set {a1, b2, c2} induces the desired
triplet, which contradicts our initial hypothesis. 2

Finally, assertion (7) of Ad hoc Repartitioning Lemma can be established. Let
A,B,C,D be four disjoint stables of a chordal graph, each one of size five.
First, we show that if no quadruplet exists in (A,B,C,D), then any vertex
of the subgraph induced by these four stables must be exactly 3-connected to
one of the three stables to which it does not belong.

Assume w.l.o.g. that a1 ∈ A is 3-connected to none of the three stables B,
C or D. In this case, a subgraph with three vertices in each stable B, C and
D exists such that none of these nine vertices is connected to a1. According
to Triplet Lemma, a triplet exists in this subgraph and then a quadruplet in
(A,B,C,D) (since each vertex of this triplet is not connected to a1), which is a
contradiction. On the other hand, assume w.l.o.g. that the vertex a1 ∈ A is 4-
connected to the stable B. Clearly, no other vertex of A can be 3-connected to
B without violating Local Sparsity Lemma. Assume w.l.o.g. that the vertices
a2, a3 ∈ A (resp. a4, a5 ∈ A) are 3-connected to C (resp. D). According to the
previous discussion, each vertex of D must be 3-connected to A, B or C. Thus,
at least one vertex of D is 3-connected to the stable B and assume w.l.o.g. that
this one is d1 ∈ D. As a1 is 4-connected to B, two vertices of B exist which
are both connected to a1 and to d1. According to Local Sparsity Lemma, these
two last vertices must be connected by an edge. According similar arguments,
another vertex d2 ∈ D is shown to be connected to a1. Indeed, a vertex of D
exists which is 3-connected to B like d1 or 3-connected to A and connected to
a1 (see Figure 13). Hence, the vertex a1 ∈ A is 2-connected to the stable D.
Since the vertices a4, a5 ∈ A are 3-connected to the stable D, we obtain that
the subgraph induced by {a1, a4, a5} and D violates Local Sparsity Lemma,
which is a contradiction.
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Fig. 13. The proof of assertion (7): a1 is 4-connected to B. According to hypothesis,
d4, d5 ∈ D are assumed to be 3-connected to the stable C. Then, two cases are
possible: two vertices of D of which d1 are 3-connected to B (on the left) or two
vertices of D different from d1 are 3-connected to A (on the right).

We have just shown that any vertex of the subgraph induced by (A,B, C, D)
must be exactly 3-connected to one of the three stables to which it does not
belong. By using the same arguments, we can show that if no quadruplet exists
in (A,B,C,D), then any vertex of this subgraph can not both 3-connected
to a stable and 2-connected to another one. Assume w.l.o.g. that the vertex
a1 ∈ A is connected to the vertices b1, b2, b3 ∈ B and to the vertices c1, c2 ∈ C.
A second vertex of A must be 3-connected to the stable B, another one to the
stable C and the two last ones to the stable D. Assume w.l.o.g. that a2 ∈ A is
3-connected to B, a3 ∈ A is 3-connected to C and a4, a5 ∈ A are 3-connected
to D. According to the previous discussion, each vertex of D must 3-connected
to A, B or C. Then, we claim that at least two vertices of D satisfy one of the
three following conditions: (i) the vertex is 3-connected to A and connected to
a1, (ii) the vertex is 3-connected to B and connected to at least two vertices
among {b1, b2, b3}, or (iii) the vertex is 3-connected to C and connected to c1

and c2. In order to avoid too heavy technical details, the proof of this claim
is left to the reader (see Figure 14).

d5

a1

C

D

a3a2 a4 a5

d1 d2 d3 d4

A

B

Fig. 14. The proof of assertion (7): a1 is 3-connected to B and 2-connected to C.

Denote w.l.o.g. by d1 and d2 the two vertices of D satisfying one of these three
conditions. Thus, we have that d1 and d2 are both connected to a1 (in case (i),
this is immediate and in cases (ii) and (iii), Local Sparsity Lemma imposes it).
Since the vertices a4, a5 ∈ A are 3-connected to the stable D, we obtain that
the subgraph induced by {a1, a4, a5} and D violates Local Sparsity Lemma,
which is a contradiction.
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To conclude, assertion (7) of Ad hoc Repartitioning Lemma is established.
For this, suppose that no quadruplet exists in (A,B,C,D). According to the
previous discussion, any vertex of the subgraph induced by these four stables
is exactly 3-connected to a stable and not 2-connected to another stable. In
each stable A, B, C or D, two pairs of vertices are 3-connected to the same
stable. Assume w.l.o.g. that the two vertices a1, a5 ∈ A are 3-connected to
the stable B with b1, b2, b3 connected to a1 and b3, b4, b5 connected to a5. As
a1 and a5 can not be 2-connected to C or D, at least three vertices of C and
three vertices of D are not connected to a1 and a5. Assume w.l.o.g. that these
vertices are respectively c2, c3, c4 and d2, d3, d4 (see Figure 15). According to
Triplet Lemma, a triplet exists with a vertex in {b1, b2, b4, b5}, a vertex in
{c2, c3, c4} and a vertex in {d2, d3, d4}. If the triplet in question is composed
of one of the two vertices b1 or b2 (resp. b4 or b5), then it induces a quadruplet
with the vertex a5 (resp. a1). In both cases, (A,B,C,D) contains a quadruplet,
which contradicts our first hypothesis and complete the proof of assertion (7).

d1 d4 d5

A

B

a1

C

D

a3a2 a4 a5

d2 d3

Fig. 15. The proof of assertion (7): the epilogue.

4.3 Discussion and conjectures

An interesting question remains open: does the repartitioning property hold
for chordal graphs when k ≥ 5? Having found no counterexample going against
a positive answer, we emit the following conjecture.

Conjecture 4.11 Let G be a chordal graph and k an integer. If G admits a
coloring such that each color appears at least k times, then χ(G, k) = dn/ke.

Besides, we have verified the validity of this assertion for two subclasses of
chordal graphs: forests and split graphs. A forest is an acyclic graph and a
split graph is a graph whose vertices admit a partition into a stable and a
clique (see [6,17] for more details). The result about forests is due to Baker
and Coffman [2]; the polynomial-time algorithm proposed by the two authors
for solving MES problem restricted to forests or trees relies on this result. The
proof given here is more direct than the original.

Proposition 4.12 (Baker and Coffman, 1996) Let G be a forest and k
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an integer. If G admits a coloring such that each color appears at least k
times, then χ(G, k) = dn/ke.

Proof. Let F = (X, Y, E) be a forest given as a bipartite graph with |X| ≥ k
and |Y | ≥ k. We can consider that |X| = k + βx and |Y | = k + βy with
1 ≤ βx, βy ≤ k − 1 (otherwise, extract stables of size exactly k in X and Y
while this condition is not satisfied). If βx + βy > k, then F admits a trivial
minimum partition into four stables of size at most k. Otherwise, we show
that we can always extract a stable of size exactly βx + βy from F and then
obtain a partition into three stables of size at most k.

When βx + βy ≤ k, we have that min{βx, βy} ≤ k/2. Assume w.l.o.g. that
βx ≤ k/2 and consider three disjoint sets X1 ∪X2 ∪X3 ⊆ X, each one of size
βx. If no stable exists in F composed of βx vertices in Xi (1 ≤ i ≤ 3) and βy

vertices in Y , then the sum of degrees of vertices of Xi must be greater than
k+1. Indeed, if this is not the case, βy vertices of Y are connected to no vertex
of Xi (because Y = k+βy) and the desired stable exists. Hence, we obtain the
following contradiction: the number of edges in F must be greater than 3k+3,
whereas Local Sparsity Lemma imposes no more than 2k+βx+βy−1 ≤ 3k−1
edges. 2

Proposition 4.13 Let G be a split graph and k an integer. If G admits a
coloring such that each color appears at least k times, then χ(G, k) = dn/ke.

Proof. Consider a partition of a split graph such that all stables have a size
at least k. Since the graph is split, all the vertices which do not belong to
a maximum clique induce necessarily a stable. Then, for each vertex of the
maximum clique, we can extract a stable of k which contains this vertex.
The remaining vertices, inducing a stable, can be partitioned in an optimal
way. 2

Corollary 4.14 The MES problem for forests and split graphs is solved in
linear time and space, given a coloring of the graph where each color appears
at least k times in input.

To confirm the previous conjecture requires to extend assertions (3) and (7) of
Ad hoc Repartitioning Lemma to the case k = 5, which corresponds to answer
to the following question: can we extract from five disjoint stables of size six
one stable having a vertex in each stable? The demonstration of assertion (7),
which is long and fastidious, does not not seem to be extendable.
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5 Conclusion

The following tables summarize all the results presented throughout the paper
about the repartitioning property.

Claw-free graphs Interval graphs Circular-arc graphs

k ≥ 2 O(n2/k) O(n + m) O(n + m)

Proper tolerance graphs Tolerance graphs

k = 2 O(n + m) counterexample

k ≥ 3 open counterexample

Forests Split graphs Chordal graphs

k ≤ 4 O(n + m) O(n + m) O(n + m)

k ≥ 5 O(n + m) O(n + m) open

Contrary to the case of chordal graphs, we think that some bounded unit
tolerance graphs exist for which the repartitioning property does not hold.
To conclude, a stronger conjecture is proposed, which tends to unify all the
results of the paper. Indeed, the condition enounced in this second conjecture,
derived from Local Sparsity Lemma, holds for claw-free graphs, circular-arc
graphs and chordal graphs.

Conjecture 5.1 The repartitioning property holds for graphs such that any
subgraph induced by two disjoint stables A and B contains no more than |A|+
|B| edges.
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