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All-terrain optimization solver
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Quality solutions in minutes
without tuning

The « Swiss Army Knife » of
mathematical optimization

free trial with support - free for academics - rental licenses
from 590 €/month - perpetual licenses from 9,900 €

www.localsolver.com
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. LocalSolver
2. Set-based features for routing

3. Beyond routing
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L ocalSolver

Quick tour
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[ eatures

Better solutions faster

* Provides high-quality solutions quickly (minutes)

* Scalable: able to tackle problems with millions of decisions

Easy to use
* « Model & Run »
* Rich but simple mathematical modeling formalism

* Direct resolution: no need of complex tuning

* Innovative modeling language for fast prototyping
e Object-oriented C++, Java, .NET, Python APIs for tight integration
e Fully portable: Windows, Linux, Mac OS (x86, x64)
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*20--'-'." Select a subset P among N points minimizing
° f the sum of distances
o % o o fromeachpointinN tothe nearest point in P

function model() {
x[1..N] <- bool() ; // decisions: point i belongs to P if x[i] = 1
constraint sumli in 1..N]J( x[i] ) == P ; // constraint: P points selected among N
minDist[i in 1..N] <- min[j in 1..N]( x[j] ? Dist[i][j] : InfiniteDist ) ; // expressions: distance to the nearest point in P

minimize suml[i in 1..N]J( minDist[i] ) ; // objective: to minimize the sum of distances

Nothing else to write: “model & run™ approach
e Straightforward, natural mathematical model

e Direct resolution: no tuning
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Parametric optimization

Maximize the volume of a bucket with a given surface of metal

5\ L = function model() {
\ [
R <- float(0,1);

r <- float(0,1);
h <- float(0,1);

V <-Pl*h/3.0*(R*R + R*r + r*r);
S <= Pl *r*r+ PI*(R+r) * sqrt(pow(R-r,2) + h*h);

....... Y.
constraint S <= 1;

r maximize V;

h
V=?(R2+Rr+r2)

S=nr2+m(R+1r)J(R—1)?+ h?
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Mathematical operators

Decisional Arithmetical Logical | Relational | Set-related
bool sum sub prod not eq count
float min max abs and neq at

int div mod sqrt or geq indexof
list log exp pow Xor leq partition
CosS sin tan if gt disjoint
floor ceil round | array + at It
dist scalar piecewise

+ operator call : to call an external native function

which can be used to implement your own (black-box) operator
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Smart APls

C++ IS0

Java 0.0

NET C# 2.0
Python 2.7, 3.2, 3.4

#EHHE optimal_bucket. py #EEHHEH

import localsolwver
import sys

with localsolver.localSolver() as ls:

PI = 3.14159265359

#

# Declares the optimization model
#

m = ls.model

R = m.float(e,1)

r = m.float(e,1)

h = m.float(e,1)

# Surface constraint

# surface = PT * r*2 + PI*(R+r) * sqrt ((R-r)*2 + h"2)
surface = PI*r®*r + PI * m.sqrt((R-r)**2 + h**2) * (R+r)
m.constraint(surface <= PI)

# Maximize volume
# volume = PI * h/3 * (R"2 + R*r + r"2)
volume = PI * h/3 * (R**2+ R*r + r**2)
m.maximize (volume)

m.close()

#

# Param

#

ls.param.nb_threads = 2
if len{sys.argv) »= 3:
else: ls.create_phase().time_limit = 6

1s.solve()

ls.create phase().time_limit = int(sys.argv[2])
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Motivations

Modeling approaches for
the 7raveling Salesman Problem



Mixed-Integer Programming

With an exponential number of constraints

&

.. R - - . . 2 . .
Minimise 3.c,% Variant with 0(n?/variables and constraints
i%j -
Conventional Formulation (C) (Dantzig, Fulkerson and Johnson (1954)) S c . (F1) (Gavish and G (1978))
INGLE COMMODITY FLOW avish and Graves
V ieN
Y %=1 ' Both constraints are retained but we also introduce (continuous) variables:
ij —
j
I yij = ‘Flow’ in an arc (i,j) i#]
Z x; =1 VY jeN

and constraints:

i#]

Y oxi< M -1 V McN such that {1}&M,|M| > 2 vii < (n - D)xij VijeN,i#j
—> lterative procedure to add subtour Z}: Yii=n-1
elimination constraints #1
D vi-D, yi=l VieN-{1}
i k
i#j iz k
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Natural Modeling

As a permutation

The Traveling Salesman Problem (TSP)

TSP: Given a list of cities and their pairwise
distances, find a shortest possible tour that
visits each city exactly once.

Objective: find a permutation a,,...,a, of
the cities that minimizes

d(ai,a2) + d(as,as) + ...+
d(an—1,an) + d(an,ar)

AusTRIA
© 50 100 km
Pt 0N
50 100 mi

where d(i, j) is the distance between A oPimal 188 four fhrough
‘e - ermany’s 15 largest cities
cities i and j

In Kenneth R. Rosen: Permutations and Combinations.
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Reference modeling

Garey & Johnson

[ND22] TRAVELING SALESMAN

INSTANCE: Set C of m cities, distance d(c;,c;) € Z* for each pair of cities
¢i,¢; € C, positive integer B.

QUESTION: Is there a tour of C having length B or less, i.e., a permutation
< Cr(1)sCn(2)s « « - » Cu(m) > Of C such that

m—1

2. d(CnnCrian) | + d(caimyrCnay) < B ?

i=1



Set-based modeling

Innovative modeling concepts
For routing & scheduling problems



List Variables

Structured decisional operator list(n)

Order a subset of values in domain {0, ..., n-1}

Each value is unique in the list

Classical operators to interact with “list”

count(u): number of values selected in the list
at(u,i) or u[i]: value at index i in the list
indexOf(u,v): index of value v in the list
contains(u,v): equivalent to “indexOf(u,v) !=-1"

disjoint(ul, u2, ..., uk): true if ul, u2, ..., uk are pairwise disjoint

partition(ul, u2, ..., uk): true if ul, u2, ..., uk induce a partition of {0, ...

’ n-l}
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Traveling salesman

function model() {

X <- list(N) ; // order n cities {0, ..., n-1} to visit
constraint count(x) == N; // exactly n cities to visit

minimize sumli in T..N=1]( Dist[ x[i-1] ][ x[i] 1)

+ Dist[ Xx[N-1] ][ x[0]1; // minimize sum of traveled distances

TSP: Given a list of cities and their pairwise
distances, find a shortest possible tour that
visits each city exactly once.

Objective: find a permutation a,,...,a, of
the cities that minimizes

d(a,l,a,g) + d(ag, ag) + ...+
d(an—1,an) + d(an,ar)

FRANCE
AUSTRIA |
9 50 100 km
§ 5 o
o 50 100 mi

where d(i, j) is the distance between 47 9Pimal 188 tour fhrough
. . < ermany’s 15 largest cities
citiesiand
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Why not a single line model ?

constraint TSP (graph) ;
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Performance ?

Objective Function TSP: real-life 200-client instance
1000000

T TOKYO GAS
o LS 6.0

400000

300000

200000

Best known solution
100000

0
1234567 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758

CPU in seconds
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Comparison with TSP MIP approach

0 . - - FEHH 4+ 4
TSP Lib instances: o

. 80% | Runtime: 10 seconds
* Symmetric -
. . o 60% |
* Size: 21 to 800 cities i) .
40% | 1
+ +
0% | . + I

runtime = 3600 seconds

100% + + + + ++  + H+ + +  + + + + + ++

80%

60%

gap

0%

20%

0% PEPENMTSEE. T3 o S 1

0 500 1000 1500 2000 2500

instance size



Vehicle routing

function model() {

X[1..K] <= list(N) ; // for each truck, order the clients to visit
constraint partition( x[1..K]); // each client is visited once
distances[k in 1..K] <= suml[i in 1..N=-1]( dist( x[k][i-1], x[k][i]) )

+ dist( x[k][N-T1], x[k][O]); // traveled distance for each truck

minimize sumlk in 1..K]( distances[k] ); // minimize total traveled distance

}

Normal Count(x) N partition(x[1..K])

maximize sum(...) disjoint(x[1..K])
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CVRP benchmarks

CVRP - instances A

32 to 80 clients, 10 trucks max.
27 instances

5 minutes of running time

LS binary: almost infeasible

LS list: 1 % avg. opt. gap

CVRP - instances X100-500

100 to 500 clients, 138 trucks max.

67 instances
5 minutes of running time
LS binary: almost infeasible

LS list: 9 % avg. opt. gap
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CVRPTW benchmarks

CVRPTW - instances Solomon R100

101 to 112 clients, 19 trucks max.
13 instances

5 minutes of running time

LS binary: N/A

LS list: 3 % avg. opt. gap

CVRPTW - instances Solomon R200

201 to 208 clients, 4 trucks max.
8 instances

5 minutes of running time

LS binary: N/A

LS list: 8 % avg. opt. gap
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Large-scale VRP challenge (FICO/Kaggle)

100 000 cities s B
Sleigh capacity
. . i haversineDistance
Non linear objective: A |
* Distance = weightCarried x 2rarcsin(\/sin2(¥) +cos(¢1)cos((p2)sin2(@))

LocalSolver (Julien Darlay) ranked
31 among 1100+ competitors
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Real-life VRP and fleet dimensioning
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Beyond routing problems

Scheduling, planning, sequencing
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Fichier Edition Affichage Historique Marque-pages Outils 2

_/ Example tour — LecalSolv... X\+

www.lecalsolver.com/documentation/exampletour/index.html

# LocalSolver

Search docs

Docs » Example tour

Example tour

® 4 o ®
PY ® e 0
Example tour @
Toy e ’
- ®
Rl Toy #* Knapsack # P-median #
P-median

Branin function
Optimal bucket
Smallest circle

Max cut

Social golfer Smallest circle %

Max cut 7

Car sequencing

Steel mill slab design

K-means

Travelling salesman problem
Quadratic assignment problem

1!

Flowshop Steel mill slab design 7

Car sequencing 7 7

Vehicule routing problem

Python APl Reference =

C++ APl Reference I




Flow-shop scheduling

Machine 1 B | A |E| D E
Machine 2 = A | C D L
Machine 3 B A | C | D E

Since we are looking for a permutation of jobs the model is
straightforward with a single list variable
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Planning
Flights to plane assignments -

& ASE C-D D->B
2‘ ‘ CoB transfer ESC
& C>A | ASB

A solution is a partition of flights into K lists (one per plane)

The goal is to minimize the total transfer times



Quadratic Assignment (Facility Location)

il
Mn N2

L
gl L]

Given flows between facilities, position facilities  / O

so as to minimize transportation costs [ Mot

function model() {
p <- list(N) ; // permutation of facilities on locations
constraint count(x) == N;
// minimize sum of distance*flow

minimize suml[i in 1..N-1] [j in 1..N-1]( Distanceli]l[j] * Flow[plilllp[jll ) ;
}
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QAP Performance

DAPLIib instances:

100% +++, Hedb = i + +
e 137 instances 0% huntime: 10 seconds
* Max size:256 facilities L60% 4 A
T a0 i+
£ 5+
20% ++.:_
. R N + +
—I— Gurobi 6.0 0%
10 E 2 4 5 878 9100 2 3
instance size (logarithmic scale)
LocalSolver 6.0 100% + L TR
80% = Runtime: 180 second$
D_ﬁD% -
o

40% T

20%

0%

10 z <] 4 3 6?89100 2 <]

instance size (logarithmic scale)
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Conclusion

List Variables are a first step towards set-based modeling in
LocalSolver

This higher level of modeling yields simple and compact models
producing high quality solutions for

|> '» Scheduling '> Planning
g ,
‘ A \| B Alc|D E
4 %l,,tgé‘, B A lc|D E
| " ) '
}' RCPSP > Facility Location Any other
sequencing
Universtit | problem
Lo 94 0 Hannover
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