
Solving routing and scheduling
problems using LocalSolver

Set-Based Modeling in LocalSolver 6.0

www.localsolver.com

Thierry BENOIST

http://www.localsolver.com/

2 33

Who we are

Bouygues, one of the French largest
corporation, €33 bn in revenues

Operations Research subsidiary of Bouygues
20 years of practice and research

Mathematical optimization solver
developed by Innovation 24

http://www.bouygues.com

http://www.innovation24.fr

http://www.localsolver.com

3 33

LocalSolver

All-terrain optimization solver

For combinatorial, numerical,
or mixed-variable optimization

Suited for tackling
large-scale problems

Quality solutions in minutes
without tuning

The « Swiss Army Knife » of
mathematical optimization

free trial with support – free for academics - rental licenses
from 590 €/month - perpetual licenses from 9,900 €

www.localsolver.com

4 33

Clients
• Construction

• Medias & Advertising

• Telco & Retail

• Large Industry

• Energy

• Banking & Finance

• Transportation

• Logistics

• Food & Agribusiness

• Aerospace & Defense

• IT Services

5 33

Outline

1. LocalSolver

2. Set-based features for routing

3. Beyond routing

6 33

LocalSolver
Quick tour

7 33

Features

Better solutions faster
• Provides high-quality solutions quickly (minutes)

• Scalable: able to tackle problems with millions of decisions

Easy to use
• « Model & Run »

• Rich but simple mathematical modeling formalism

• Direct resolution: no need of complex tuning

• Innovative modeling language for fast prototyping

• Object-oriented C++, Java, .NET, Python APIs for tight integration

• Fully portable: Windows, Linux, Mac OS (x86, x64)

8 33

P-median

Select a subset P among N points minimizing
the sum of distances
from each point in N to the nearest point in P

function model() {

x[1..N] <- bool() ; // decisions: point i belongs to P if x[i] = 1

constraint sum[i in 1..N](x[i]) == P ; // constraint: P points selected among N

minDist[i in 1..N] <- min[j in 1..N](x[j] ? Dist[i][j] : InfiniteDist) ; // expressions: distance to the nearest point in P

minimize sum[i in 1..N](minDist[i]) ; // objective: to minimize the sum of distances

}

Nothing else to write: “model & run” approach
• Straightforward, natural mathematical model

• Direct resolution: no tuning

9 33

Parametric optimization

Maximize the volume of a bucket with a given surface of metal

𝑟

𝑅

ℎ

𝑉 =
𝜋ℎ

3
(𝑅2 + 𝑅𝑟 + 𝑟2)

S = 𝜋𝑟2 + 𝜋(𝑅 + 𝑟) 𝑅 − 𝑟 2 + ℎ2

function model() {

R <- float(0,1);
r <- float(0,1);
h <- float(0,1);

V <- PI * h / 3.0 * (R*R + R*r + r*r);
S <- PI * r * r + PI*(R+r) * sqrt(pow(R-r,2) + h*h);

constraint S <= 1;
maximize V;

}

10 33

Mathematical operators

Decisional Arithmetical Logical Relational Set-related

bool sum sub prod not eq count

float min max abs and neq at

int div mod sqrt or geq indexof

list log exp pow xor leq partition

cos sin tan iif gt disjoint

floor ceil round array + at lt

dist scalar piecewise

+ operator call : to call an external native function
which can be used to implement your own (black-box) operator

11 33

Smart APIs

C++ ISO
Java 5.0
.NET C# 2.0
Python 2.7, 3.2, 3.4

12 33

Motivations
Modeling approaches for

the Traveling Salesman Problem

13 33

Mixed-Integer Programming
With an exponential number of constraints

Minimise ∑cij xij (1)
i, j
i≠j

Conventional Formulation (C) (Dantzig, Fulkerson and Johnson (1954))

 ∑ xij =1
j

j≠i

 ∀ i∈N (2)

 ∑ xij =1
 ∀ j∈N (3)

i
i≠ j

 ∑ xij ≤ |M| – 1 ∀ M⊂N such that {1}∉M,|M| ≥ 2 (4)

i, j∈M
i≠ j

 (the symbol ‘ ⊂ ‘ represents proper inclusion)

This formulation has 2n + 2n - 2 constraints and n(n - 1) 0-1 variables.

SINGLE COMMODITY FLOW (F1) (Gavish and Graves (1978))

Both constraints are retained but we also introduce (continuous) variables:

yij = ‘Flow’ in an arc (i,j) i≠j

and constraints:

yij ≤ (n - 1)xij

∀ i,j ∈N , i≠j (7)

∑ y1j = n−1
j

j≠1

 (8)

∑ yij −∑ y jk =1
 ∀ j∈N - {1} (9)

i k
i≠ j i≠ k

Variant with O(n²) variables and constraints

→ Iterative procedure to add subtour

elimination constraints

In Orman & Williams : A survey of different integer programming formulations of the TSP

14 33

Natural Modeling

As a permutation

In Kenneth R. Rosen: Permutations and Combinations.

15 33

Reference modeling

Garey & Johnson

16 33

Set-based modeling
Innovative modeling concepts

for routing & scheduling problems

17 33

Structured decisional operator list(n)
• Order a subset of values in domain {0, …, n-1}

• Each value is unique in the list

Classical operators to interact with “list”
• count(u): number of values selected in the list

• at(u,i) or u[i]: value at index i in the list

• indexOf(u,v): index of value v in the list

• contains(u,v): equivalent to “indexOf(u,v) != -1”

• disjoint(u1, u2, …, uk): true if u1, u2, …, uk are pairwise disjoint

• partition(u1, u2, …, uk): true if u1, u2, …, uk induce a partition of {0, …, n-1}

List Variables

18 33

Traveling salesman

function model() {

x <- list(N) ; // order n cities {0, ..., n-1} to visit

constraint count(x) == N; // exactly n cities to visit

minimize sum[i in 1..N-1](Dist[x[i-1]][x[i]])
+ Dist[x[N-1]][x[0]] ; // minimize sum of traveled distances

}

Could you imagine simpler model?
• Natural declarative model: straightforward to understand

• Common set-oriented concepts: easy to learn

• Still easier for people with (basic) programming skills

• Compact: linear in the size of input → highly scalable (1 million nodes)

19 33

Why not a single line model ?

20 33

Performance ?

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758

TSP: real-life 200-client instance

Best known solution

LS 6.0

CPU in seconds

Objective function

21 33

Comparison with TSP MIP approach

TSP Lib instances:
• Symmetric

• Size: 21 to 800 cities

Gurobi 6.0

LocalSolver 6.0

22 33

Vehicle routing

function model() {

x[1..K] <- list(N) ; // for each truck, order the clients to visit

constraint partition(x[1..K]); // each client is visited once

distances[k in 1..K] <- sum[i in 1..N-1](dist(x[k][i-1], x[k][i]))
+ dist(x[k][N-1], x[k][0]); // traveled distance for each truck

minimize sum[k in 1..K](distances[k]); // minimize total traveled distance

}

TSP VRP

Normal Count(x)=N partition(x[1..K])

Prize-collecting maximize sum(…) disjoint(x[1..K])

23 33

CVRP benchmarks

CVRP - instances A
• 32 to 80 clients, 10 trucks max.

• 27 instances

• 5 minutes of running time

• LS binary: almost infeasible

• LS list: 1 % avg. opt. gap

CVRP - instances X100-500
• 100 to 500 clients, 138 trucks max.

• 67 instances

• 5 minutes of running time

• LS binary: almost infeasible

• LS list: 9 % avg. opt. gap

24 33

CVRPTW benchmarks

CVRPTW - instances Solomon R100
• 101 to 112 clients, 19 trucks max.

• 13 instances

• 5 minutes of running time

• LS binary: N/A

• LS list: 3 % avg. opt. gap

CVRPTW - instances Solomon R200
• 201 to 208 clients, 4 trucks max.

• 8 instances

• 5 minutes of running time

• LS binary: N/A

• LS list: 8 % avg. opt. gap

25 33

Large-scale VRP challenge (FICO/Kaggle)

100 000 cities

Sleigh capacity

Non linear objective:
• Distance = weightCarried 

haversineDistance

LocalSolver (Julien Darlay) ranked
31 among 1100+ competitors

26 33

Real-life VRP and fleet dimensioning

Today in room MC3 at 5:20 pm – Frédéric GARDI

27 33

Beyond routing problems
Scheduling, planning, sequencing

29 33

Flow-shop scheduling

Since we are looking for a permutation of jobs the model is
straightforward with a single list variable

Machine 1

Machine 2

Machine 3

30 33

Planning
Flights to plane assignments

A→E C→D D→B

C→B E→C

C→A A→B

transfer

A solution is a partition of flights into K lists (one per plane)

The goal is to minimize the total transfer times

31 33

Quadratic Assignment (Facility Location)

Given flows between facilities, position facilities
so as to minimize transportation costs

function model() {

p <- list(N) ; // permutation of facilities on locations

constraint count(x) == N;

// minimize sum of distance*flow

minimize sum[i in 1..N-1] [j in 1..N-1](Distance[i][j] * Flow[p[i]][p[j]]) ;

}

32 33

QAP Performance

QAPLib instances:
• 137 instances

• Max size:256 facilities

Gurobi 6.0

LocalSolver 6.0

33 33

Conclusion
List Variables are a first step towards set-based modeling in

LocalSolver

This higher level of modeling yields simple and compact models
producing high quality solutions for

Routing Planning

RCPSP Any other

sequencing

problem

Facility Location

Scheduling

	Slide 1
	Slide 2: Who we are
	Slide 3: LocalSolver
	Slide 4: Clients
	Slide 5: Outline
	Slide 6: LocalSolver
	Slide 7: Features
	Slide 8: P-median
	Slide 9: Parametric optimization
	Slide 10: Mathematical operators
	Slide 11: Smart APIs
	Slide 12: Motivations
	Slide 13: Mixed-Integer Programming
	Slide 14: Natural Modeling
	Slide 15: Reference modeling
	Slide 16: Set-based modeling
	Slide 17: List Variables
	Slide 18: Traveling salesman
	Slide 19: Why not a single line model ?
	Slide 20: Performance ?
	Slide 21: Comparison with TSP MIP approach
	Slide 22: Vehicle routing
	Slide 23: CVRP benchmarks
	Slide 24: CVRPTW benchmarks
	Slide 25: Large-scale VRP challenge (FICO/Kaggle)
	Slide 26: Real-life VRP and fleet dimensioning
	Slide 27: Beyond routing problems
	Slide 28
	Slide 29: Flow-shop scheduling
	Slide 30: Planning
	Slide 31: Quadratic Assignment (Facility Location)
	Slide 32: QAP Performance
	Slide 33: Conclusion

