“:LocalSolver

Solving routing and scheduling
problems using LocalSolver

Set-Based Modeling in LocalSolver 6.0

www.localsolver.com

Thierry BENOIST

http://www.localsolver.com/

Who we are

Innovation24

LocalSolver

Bouygues, one of the French largest

corporation, €33 bn in revenues
http://www.bouygues.com

Operations Research subsidiary of Bouygues

20 years of practice and research
http://www.innovation24.fr

Mathematical optimization solver
developed by Innovation 24

http://www.localsolver.com

2133

L ocalSolver

All-terrain optimization solver

or mixed-variable o

D

For combinatorial, numerical.

‘Imization

Suited for tac
large-scale pro

g8

Ing

blems

Quality solutions in minutes
without tuning

The « Swiss Army Knife » of
mathematical optimization

free trial with support - free for academics - rental licenses
from 590 €/month - perpetual licenses from 9,900 €

www.localsolver.com

3133

\Di #AColas (=)
e Medias & Advertising e | ycpecaux POV

* Construction &
* Telco & Retail tovarsqgy SGenesys SoOcig & Timeplus
° La rge IndUStry |/ il m@n PSA PEUGEOTCITROE“ sl p e) FUﬁTSU

[J
> - —
¢ Energy é'D‘F CNGIC PRIMAGAfE cea @6
* Banking & Finance M

CAISSE DEPARGNE CREDIT FONCIER
BANQUE

mm—z

f
m
s, Japa

* Transportation @ SIEMENS STELLRR

RESEAU

* Logistics FM>LOGISTIC eterrricao *’A-5/5 "ORfAcicne

\\\\\\\\\\\\\\\\

* Food & Agribusiness ®veoua i@
. Aerospace & Defense A..m’;—!,.... A,ﬁ,s MDA ;’é

nnnnnnnnnnnnnnnnnnn

4133

. LocalSolver
2. Set-based features for routing

3. Beyond routing

5|33

L ocalSolver

Quick tour

6133

[eatures

Better solutions faster

* Provides high-quality solutions quickly (minutes)

* Scalable: able to tackle problems with millions of decisions

Easy to use
* « Model & Run »
* Rich but simple mathematical modeling formalism

* Direct resolution: no need of complex tuning

* Innovative modeling language for fast prototyping
e Object-oriented C++, Java, .NET, Python APIs for tight integration
e Fully portable: Windows, Linux, Mac OS (x86, x64)

7133

*20--'-'." Select a subset P among N points minimizing
° f the sum of distances
o % o o fromeachpointinN tothe nearest point in P

function model() {
x[1..N] <- bool() ; // decisions: point i belongs to P if x[i] = 1
constraint sumli in 1..N]J(x[i]) == P ; // constraint: P points selected among N
minDist[i in 1..N] <- min[j in 1..N](x[j] ? Dist[i][j] : InfiniteDist) ; // expressions: distance to the nearest point in P

minimize suml[i in 1..N]J(minDist[i]) ; // objective: to minimize the sum of distances

Nothing else to write: “model & run™ approach
e Straightforward, natural mathematical model

e Direct resolution: no tuning

8133

Parametric optimization

Maximize the volume of a bucket with a given surface of metal

5\ L = function model() {
\ [
R <- float(0,1);

r <- float(0,1);
h <- float(0,1);

V <-Pl*h/3.0*(R*R + R*r + r*r);
S <= Pl *r*r+ PI*(R+r) * sqrt(pow(R-r,2) + h*h);

....... Y.
constraint S <= 1;

r maximize V;

h
V=?(R2+Rr+r2)

S=nr2+m(R+1r)J(R—1)?+ h?

9|33

Mathematical operators

Decisional Arithmetical Logical | Relational | Set-related
bool sum sub prod not eq count
float min max abs and neq at

int div mod sqrt or geq indexof
list log exp pow Xor leq partition
CosS sin tan if gt disjoint
floor ceil round | array + at It
dist scalar piecewise

+ operator call : to call an external native function

which can be used to implement your own (black-box) operator

10133

Smart APls

C++ IS0

Java 0.0

NET C# 2.0
Python 2.7, 3.2, 3.4

#EHHE optimal_bucket. py #EEHHEH

import localsolwver
import sys

with localsolver.localSolver() as ls:

PI = 3.14159265359

#

Declares the optimization model
#

m = ls.model

R = m.float(e,1)

r = m.float(e,1)

h = m.float(e,1)

Surface constraint

surface = PT * r*2 + PI*(R+r) * sqrt ((R-r)*2 + h"2)
surface = PI*r®*r + PI * m.sqrt((R-r)**2 + h**2) * (R+r)
m.constraint(surface <= PI)

Maximize volume
volume = PI * h/3 * (R"2 + R*r + r"2)
volume = PI * h/3 * (R**2+ R*r + r**2)
m.maximize (volume)

m.close()

#

Param

#

ls.param.nb_threads = 2
if len{sys.argv) »= 3:
else: ls.create_phase().time_limit = 6

1s.solve()

ls.create phase().time_limit = int(sys.argv[2])

11133

Motivations

Modeling approaches for
the 7raveling Salesman Problem

Mixed-Integer Programming

With an exponential number of constraints

&

.. R - - . . 2 . .
Minimise 3.c,% Variant with 0(n?/variables and constraints
i%j -
Conventional Formulation (C) (Dantzig, Fulkerson and Johnson (1954)) S c . (F1) (Gavish and G (1978))
INGLE COMMODITY FLOW avish and Graves
V ieN
Y %=1 ' Both constraints are retained but we also introduce (continuous) variables:
ij —
j
I yij = ‘Flow’ in an arc (i,j) i#]
Z x; =1 VY jeN

and constraints:

i#]

Y oxi< M -1 V McN such that {1}&M,|M| > 2 vii < (n - D)xij VijeN,i#j
—> lterative procedure to add subtour Z}: Yii=n-1
elimination constraints #1
D vi-D, yi=l VieN-{1}
i k
i#j iz k

13133

In Orman & Williams : A survey of different integer programming formulations of the TSP

Natural Modeling

As a permutation

The Traveling Salesman Problem (TSP)

TSP: Given a list of cities and their pairwise
distances, find a shortest possible tour that
visits each city exactly once.

Objective: find a permutation a,,...,a, of
the cities that minimizes

d(ai,a2) + d(as,as) + ...+
d(an—1,an) + d(an,ar)

AusTRIA
© 50 100 km
Pt 0N
50 100 mi

where d(i, j) is the distance between A oPimal 188 four fhrough
‘e - ermany’s 15 largest cities
cities i and j

In Kenneth R. Rosen: Permutations and Combinations.

14133

Reference modeling

Garey & Johnson

[ND22] TRAVELING SALESMAN

INSTANCE: Set C of m cities, distance d(c;,c;) € Z* for each pair of cities
¢i,¢; € C, positive integer B.

QUESTION: Is there a tour of C having length B or less, i.e., a permutation
< Cr(1)sCn(2)s « « - » Cu(m) > Of C such that

m—1

2. d(CnnCrian) | + d(caimyrCnay) < B ?

i=1

Set-based modeling

Innovative modeling concepts
For routing & scheduling problems

List Variables

Structured decisional operator list(n)

Order a subset of values in domain {0, ..., n-1}

Each value is unique in the list

Classical operators to interact with “list”

count(u): number of values selected in the list
at(u,i) or u[i]: value at index i in the list
indexOf(u,v): index of value v in the list
contains(u,v): equivalent to “indexOf(u,v) !=-1"

disjoint(ul, u2, ..., uk): true if ul, u2, ..., uk are pairwise disjoint

partition(ul, u2, ..., uk): true if ul, u2, ..., uk induce a partition of {0, ...

’ n-l}

17133

Traveling salesman

function model() {

X <- list(N) ; // order n cities {0, ..., n-1} to visit
constraint count(x) == N; // exactly n cities to visit

minimize sumli in T..N=1](Dist[x[i-1]][x[i] 1)

+ Dist[Xx[N-1]][x[0]1; // minimize sum of traveled distances

TSP: Given a list of cities and their pairwise
distances, find a shortest possible tour that
visits each city exactly once.

Objective: find a permutation a,,...,a, of
the cities that minimizes

d(a,l,a,g) + d(ag, ag) + ...+
d(an—1,an) + d(an,ar)

FRANCE
AUSTRIA |
9 50 100 km
§ 5 o
o 50 100 mi

where d(i, j) is the distance between 47 9Pimal 188 tour fhrough
. . < ermany’s 15 largest cities
citiesiand

18133

Why not a single line model ?

constraint TSP (graph) ;

19133

Performance ?

Objective Function TSP: real-life 200-client instance
1000000

T TOKYO GAS
o LS 6.0

400000

300000

200000

Best known solution
100000

0
1234567 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758

CPU in seconds

20133

Comparison with TSP MIP approach

0 . - - FEHH 4+ 4
TSP Lib instances: o

. 80% | Runtime: 10 seconds
* Symmetric -
. . o 60% |
* Size: 21 to 800 cities i) .
40% | 1
+ +
0% | . + I

runtime = 3600 seconds

100% + + + + ++ + H+ + + + + + + + ++

80%

60%

gap

0%

20%

0% PEPENMTSEE. T3 o S 1

0 500 1000 1500 2000 2500

instance size

Vehicle routing

function model() {

X[1..K] <= list(N) ; // for each truck, order the clients to visit
constraint partition(x[1..K]); // each client is visited once
distances[k in 1..K] <= suml[i in 1..N=-1](dist(x[k][i-1], x[k][i]))

+ dist(x[k][N-T1], x[k][O]); // traveled distance for each truck

minimize sumlk in 1..K](distances[k]); // minimize total traveled distance

}

Normal Count(x) N partition(x[1..K])

maximize sum(...) disjoint(x[1..K])

22133

CVRP benchmarks

CVRP - instances A

32 to 80 clients, 10 trucks max.
27 instances

5 minutes of running time

LS binary: almost infeasible

LS list: 1 % avg. opt. gap

CVRP - instances X100-500

100 to 500 clients, 138 trucks max.

67 instances
5 minutes of running time
LS binary: almost infeasible

LS list: 9 % avg. opt. gap

23133

CVRPTW benchmarks

CVRPTW - instances Solomon R100

101 to 112 clients, 19 trucks max.
13 instances

5 minutes of running time

LS binary: N/A

LS list: 3 % avg. opt. gap

CVRPTW - instances Solomon R200

201 to 208 clients, 4 trucks max.
8 instances

5 minutes of running time

LS binary: N/A

LS list: 8 % avg. opt. gap

24133

Large-scale VRP challenge (FICO/Kaggle)

100 000 cities s B
Sleigh capacity
. . i haversineDistance
Non linear objective: A |
* Distance = weightCarried x 2rarcsin(\/sin2(¥) +cos(¢1)cos((p2)sin2(@))

LocalSolver (Julien Darlay) ranked
31 among 1100+ competitors

25133

Real-life VRP and fleet dimensioning

26|33

Beyond routing problems

Scheduling, planning, sequencing

27133

Fichier Edition Affichage Historique Marque-pages Outils 2

_/ Example tour — LecalSolv... X\+

www.lecalsolver.com/documentation/exampletour/index.html

LocalSolver

Search docs

Docs » Example tour

Example tour

® 4 o ®
PY ® e 0
Example tour @
Toy e ’
- ®
Rl Toy #* Knapsack # P-median #
P-median

Branin function
Optimal bucket
Smallest circle

Max cut

Social golfer Smallest circle %

Max cut 7

Car sequencing

Steel mill slab design

K-means

Travelling salesman problem
Quadratic assignment problem

1!

Flowshop Steel mill slab design 7

Car sequencing 7 7

Vehicule routing problem

Python APl Reference =

C++ APl Reference I

Flow-shop scheduling

Machine 1 B | A |E| D E
Machine 2 = A | C D L
Machine 3 B A | C | D E

Since we are looking for a permutation of jobs the model is
straightforward with a single list variable

29133

Planning
Flights to plane assignments -

& ASE C-D D->B
2‘ ‘ CoB transfer ESC
& C>A | ASB

A solution is a partition of flights into K lists (one per plane)

The goal is to minimize the total transfer times

Quadratic Assignment (Facility Location)

il
Mn N2

L
gl L]

Given flows between facilities, position facilities / O

so as to minimize transportation costs [Mot

function model() {
p <- list(N) ; // permutation of facilities on locations
constraint count(x) == N;
// minimize sum of distance*flow

minimize suml[i in 1..N-1] [j in 1..N-1](Distanceli]l[j] * Flow[plilllp[jll) ;
}

31133

QAP Performance

DAPLIib instances:

100% +++, Hedb = i + +
e 137 instances 0% huntime: 10 seconds
* Max size:256 facilities L60% 4 A
T a0 i+
£ 5+
20% ++.:_
. R N + +
—I— Gurobi 6.0 0%
10 E 2 4 5 878 9100 2 3
instance size (logarithmic scale)
LocalSolver 6.0 100% + L TR
80% = Runtime: 180 second$
D_ﬁD% -
o

40% T

20%

0%

10 z <] 4 3 6?89100 2 <]

instance size (logarithmic scale)

32133

Conclusion

List Variables are a first step towards set-based modeling in
LocalSolver

This higher level of modeling yields simple and compact models
producing high quality solutions for

|> '» Scheduling '> Planning
g ,
‘ A \| B Alc|D E
4 %l,,tgé‘, B A lc|D E
| ") '
}' RCPSP > Facility Location Any other
sequencing
Universtit | problem
Lo 94 0 Hannover

33133

	Slide 1
	Slide 2: Who we are
	Slide 3: LocalSolver
	Slide 4: Clients
	Slide 5: Outline
	Slide 6: LocalSolver
	Slide 7: Features
	Slide 8: P-median
	Slide 9: Parametric optimization
	Slide 10: Mathematical operators
	Slide 11: Smart APIs
	Slide 12: Motivations
	Slide 13: Mixed-Integer Programming
	Slide 14: Natural Modeling
	Slide 15: Reference modeling
	Slide 16: Set-based modeling
	Slide 17: List Variables
	Slide 18: Traveling salesman
	Slide 19: Why not a single line model ?
	Slide 20: Performance ?
	Slide 21: Comparison with TSP MIP approach
	Slide 22: Vehicle routing
	Slide 23: CVRP benchmarks
	Slide 24: CVRPTW benchmarks
	Slide 25: Large-scale VRP challenge (FICO/Kaggle)
	Slide 26: Real-life VRP and fleet dimensioning
	Slide 27: Beyond routing problems
	Slide 28
	Slide 29: Flow-shop scheduling
	Slide 30: Planning
	Slide 31: Quadratic Assignment (Facility Location)
	Slide 32: QAP Performance
	Slide 33: Conclusion

