

Solving routing and scheduling problems using LocalSolver

Set-Based Modeling in LocalSolver 6.0

www.localsolver.com

Thierry BENOIST

Bouygues, one of the French largest corporation, €33 bn in revenues http://www.bouygues.com

Innovation24

Operations Research subsidiary of Bouygues 20 years of practice and research http://www.innovation24.fr

LocalSolver

Mathematical optimization solver developed by Innovation 24 http://www.localsolver.com

All-terrain optimization solver

For combinatorial, numerical, or mixed-variable optimization

Suited for tackling large-scale problems

Quality solutions in minutes without tuning The « Swiss Army Knife » of mathematical optimization

free trial with support – free for academics – rental licenses from 590 €/month – perpetual licenses from 9,900 € www.localsolver.com

3 33

Clients

1. LocalSolver

2. Set-based features for routing

3. Beyond routing

LocalSolver

Quick tour

Features

Better solutions faster

- Provides high-quality solutions quickly (minutes)
- Scalable: able to tackle problems with millions of decisions

Easy to use

- « Model & Run »
 - Rich but simple mathematical modeling formalism
 - Direct resolution: no need of complex tuning
- Innovative modeling language for fast prototyping
- Object-oriented C++, Java, .NET, Python APIs for tight integration
- Fully portable: Windows, Linux, Mac OS (x86, x64)

P-median

Select a subset P among N points minimizing the sum of distances from each point in N to the nearest point in P

function model() {

x[1..N] <- bool(); // decisions: point i belongs to P if x[i] = 1

constraint sum[i in 1..N](x[i]) == P ; // constraint: P points selected among N

minDist[i in 1..N] <- min[j in 1..N](x[j] ? Dist[i][j] : InfiniteDist) ; // expressions: distance to the nearest point in P

minimize sum[i in 1..N](minDist[i]) ; // objective: to minimize the sum of distances

Nothing else to write: "model & run" approach

- Straightforward, natural mathematical model
- Direct resolution: no tuning

Maximize the volume of a bucket with a given surface of metal

Decisional	Arithmetical		Logical	Relational	Set-related	
bool	sum	sub	prod	not	eq	count
float	min	max	abs	and	neq	at
int	div	mod	sqrt	or	geq	indexof
list	log	exp	pow	xor	leq	partition
	COS	sin	tan	iif	gt	disjoint
	floor	ceil	round	array + at	lt	
	dist	scalar		piecewise		

+ operator call : to call an external native function which can be used to implement your own (black-box) operator

Smart APIs

C++ISOJava 5.0 .NET C# 2.0 Python 2.7, 3.2, 3.4

```
import localsolver
import sys
with localsolver.LocalSolver() as ls:
   PI = 3.14159265359
   #
   # Declares the optimization model
   m = ls.model
   R = m.float(0,1)
   r = m.float(0,1)
   h = m.float(0,1)
   # Surface constraint
   \# surface = PI * r^2 + PI*(R+r) * sqrt ((R-r)^2 + h^2)
   surface = PI*r*r + PI * m.sqrt((R-r)**2 + h**2) * (R+r)
   m.constraint(surface <= PI)</pre>
   # Maximize volume
   # volume = PI * h/3 * (R^2 + R*r + r^2)
```

```
volume = PI * h/3 * (R**2+ R*r + r**2)
m.maximize(volume)
```

```
m.close()
```

```
#
# Param
ls.param.nb threads = 2
if len(sys.argv) >= 3: ls.create_phase().time_limit = int(sys.argv[2])
else: ls.create_phase().time_limit = 6
```

```
ls.solve()
```

Motivations

Modeling approaches for the *Traveling Salesman Problem*

Mixed-Integer Programming

With an **exponential number** of constraints

Variant with O(n²) variables and constraints

Conventional Formulation (C) (Dantzig, Fulkerson and Johnson (1954))

Minimise $\sum c_{ij} x_{ij}$

SINGLE COMMODITY FLOW (**F1**) (Gavish and Graves (1978)) Both constraints are retained but we also introduce (continuous) variables:

 y_{ij} = 'Flow' in an arc (*i*,*j*) $i \neq j$

and constraints:

 $y_{ij} \le (n-1)x_{ij} \qquad \forall i,j \in N, i \ne j$

→ Iterative procedure to add subtour elimination constraints

$$\sum_{\substack{j\\j\neq 1}} y_{1j} = n-1$$

 $\sum_{i} y_{ij} - \sum_{k} y_{jk} = 1$

 $\forall j \in N - \{1\}$

13 33

In Orman & Williams : A survey of different integer programming formulations of the TSP

Natural Modeling

As a permutation

The Traveling Salesman Problem (TSP)

TSP: Given a list of cities and their pairwise distances, find a shortest possible tour that visits each city exactly once.

Objective: find a permutation a_1, \ldots, a_n of the cities that minimizes

$$d(a_1, a_2) + d(a_2, a_3) + \dots + d(a_{n-1}, a_n) + d(a_n, a_1)$$

North Sea Meanson Riel Rostock Sea Bremerhaven Lübeck Ermerhaven Hannovs Magdeburg Düsseldorf Kassel BERLIN POL Düsseldorf Kassel Bresder BELL Düsseldorf Kassel Bresder Wiesbaden am Main CZECH Kalsruhe Nümberg Stuttgart FRANCE Monchen AUSTRIA

where d(i, j) is the distance between cities *i* and *j*

An optimal TSP tour through Germany's 15 largest cities

In Kenneth R. Rosen: Permutations and Combinations.

Garey & Johnson

[ND22] TRAVELING SALESMAN

INSTANCE: Set C of m cities, distance $d(c_i, c_j) \in Z^+$ for each pair of cities $c_i, c_j \in C$, positive integer B.

QUESTION: Is there a tour of C having length B or less, i.e., a permutation $< c_{\pi(1)}, c_{\pi(2)}, \ldots, c_{\pi(m)} >$ of C such that

$$\left|\sum_{i=1}^{m-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right| + d(c_{\pi(m)}, c_{\pi(1)}) \leq B ?$$

Set-based modeling

Innovative modeling concepts for routing & scheduling problems

List Variables

Structured decisional operator list(n)

- Order a subset of values in domain {0, ..., n-1}
- Each value is **unique** in the list

Classical operators to interact with "list"

- **count**(u): number of values selected in the list
- at(u,i) or u[i]: value at index i in the list
- indexOf(u,v): index of value v in the list
- contains(u,v): equivalent to "indexOf(u,v) != -1"
- disjoint(u1, u2, ..., uk): true if u1, u2, ..., uk are pairwise disjoint
- partition(u1, u2, ..., uk): true if u1, u2, ..., uk induce a partition of {0, ..., n-1}

Traveling salesman

TSP: Given a list of cities and their pairwise distances, find a shortest possible tour that visits each city exactly once.

Objective: find a permutation a_1, \ldots, a_n of the cities that minimizes

$$d(a_1, a_2) + d(a_2, a_3) + \ldots + d(a_{n-1}, a_n) + d(a_n, a_1)$$

where d(i, j) is the distance between cities *i* and *j*

An optimal TSP tour through Germany's 15 largest cities

Why not a single line model?

constraint TSP(graph);

19 33

Performance?

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758

CPU in seconds

20 33

Comparison with TSP MIP approach

TSP Lib instances:

- Symmetric
- Size: 21 to 800 cities

runtime = 3600 seconds

function model() {

minimize sum[k in 1..K](distances[k]); // minimize total traveled distance

	TSP	VRP
Normal	Count(x)=N	partition(x[1K])
Prize-collecting	maximize sum()	disjoint(x[1K])

CVRP benchmarks

CVRP - instances A

- 32 to 80 clients, 10 trucks max.
- 27 instances
- 5 minutes of running time
- LS binary: almost infeasible
- LS list: 1 % avg. opt. gap

CVRP – instances X100–500

- 100 to 500 clients, 138 trucks max.
- 67 instances
- 5 minutes of running time
- LS binary: almost infeasible
- LS list: 9 % avg. opt. gap

CVRPTW benchmarks

CVRPTW - instances Solomon R100

- 101 to 112 clients, 19 trucks max.
- 13 instances
- 5 minutes of running time
- LS binary: N/A
- LS list: 3 % avg. opt. gap

CVRPTW – instances Solomon R200

- 201 to 208 clients, 4 trucks max.
- 8 instances
- 5 minutes of running time
- LS binary: N/A
- LS list: 8 % avg. opt. gap

25 33

Large-scale VRP challenge (FICO/Kaggle)

haversineDistance

100 000 cities

Sleigh capacity

Non linear objective:

• Distance = weightCarried × $2r \arcsin\left(\sqrt{\sin^2\left(\frac{\varphi_2-\varphi_1}{2}\right)+\cos(\varphi_1)\cos(\varphi_2)\sin^2\left(\frac{\lambda_2-\lambda_1}{2}\right)}\right)$

LocalSolver (Julien Darlay) ranked 31 among 1100+ competitors

Real-life VRP and fleet dimensioning

Today in room MC3 at 5:20 pm – Frédéric GARDI

Beyond routing problems

Scheduling, planning, sequencing

27

33

Flow-shop scheduling

Since we are looking for a permutation of jobs the model is straightforward with a single list variable

Planning

Flights to plane assignments

STELLNR

A solution is a partition of flights into K lists (one per plane) The goal is to minimize the total transfer times

Quadratic Assignment (Facility Location)

Given flows between facilities, position facilities so as to minimize transportation costs

function model() {

p <- list(N); // permutation of facilities on locations</pre>

constraint count(x) == N;

// minimize sum of distance*flow

minimize sum[i in 1..N-1] [j in 1..N-1](Distance[i][j] * Flow[p[i]][p[j]]) ;

QAP Performance

QAPLib instances:

- 137 instances
- Max size:256 facilities

instance size (logarithmic scale)

Conclusion

List Variables are a first step towards set-based modeling in LocalSolver

This higher level of modeling yields simple and compact models producing high quality solutions for

