
1 24

Modeling Patterns for LocalSolver
T. Benoist, J. Darlay, B. Estellon, F. Gardi, R. Megel

2 24

Who we are

Large industrial group with businesses in
construction, telecom, media

Operation Research subsidiary
of the Bouygues group

Flagship product
of Innovation 24

www.bouygues.com

www.innovation24.fr

www.localsolver.com

3 24

LocalSolver in one slide

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city
in S

function model() {
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize sum[i in 1..N] (minDistance[i]);

}

Results on the OR Library
• 28 optimal solutions on the 40 instances of the OR Lib
• an average gap of 0.6%
• with 1 minute per instance

4 24

LocalSolver in one slide

function model() {
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize sum[i in 1..N] (minDistance[i]);

}

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city
in S

Results on the OR Library
• 28 optimal solutions on the 40 instances of the OR Lib
• an average gap of 0.6%
• with 1 minute per instance

5 24

LocalSolver in one slide

function model() {
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize sum[i in 1..N] (minDistance[i]);

}

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city
in S

Results on the OR Library
• 28 optimal solutions on the 40 instances of the OR Lib
• an average gap of 0.6%
• with 1 minute per instance

An hybrid math
programming solver

For large-scale mixed-variable
non-convex optimization problems

Providing high-quality solutions
in short running time

without any tuning

6 24

Outline

→ LocalSolver

→ Modeling Patterns for Local Search ?

→ Six Modeling Patterns

7 24

Modeling Patterns for LocalSolver
Why ?

8 24

Modeling patterns ?

A classic topic in MIP or CP

Very little literature on modeling for Local Search…

…because of the absence of model-and-run solver

→models and algorithms were designed together and not
always clearly separated

9 24

Modeling Pattern #1
Choose the right set of decision variables

10 24

Choose the right set of decision variables

function model() {
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize sum[i in 1..N] (minDistance[i]);

}

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city
in S

Results on the OR Library
• 28 optimal solutions on the 40 instances of the OR Lib
• an average gap of 0.6%
• with 1 minute per instance

11 24

Modeling Pattern #2
Precompute what can be precomputed

12 24

Precompute what can be precomputed
Document processing : dans un tableau une case de texte a plusieurs configurations
hauteur x largeur possibles.

Comment choisir la configurations de chaque case de façon à minimiser la hauteur du
tableau (sa largeur étant limitée) ?

29 x 82
34x 61

45x 43

LocalSolver : mathematical
programming by local search

LocalSolver :
mathematical

programming by
local search

LocalSolver :
mathematical
programming
by local search

13 24

Precompute what can be precomputed
Première modélisation : 1 variable de décision par configuration (largeur, hauteur)
possible pour chaque cellule

Formulation étendue :
• On remarque qu’à partir de la largeur d’une colonne on peut déterminer la hauteur

minimum de chacune de ses cellules.

• 1 variable de décision par largeur possible pour chaque colonne

• Conséquence : en changeant une variable de décision, LocalSolver va changer la
hauteur et la largeur de toutes les cellules dans la colonne

-> R. Megel (Roadef 2013).
Modélisations LocalSolver de type « génération de colonnes » .

14 24

Modeling Pattern #3
Do not limit yourself to linear operators

15 24

Do not limit yourself to linear operators

TRAVELING SALESMAN PROBLEM

MIP approach: Xij=1 if city j is after city i in the tour
• Matching constraints σ𝑗 𝑋𝑖𝑗 = 1 and σ𝑖 𝑋𝑖𝑗 = 1

• Plus an exponential number of subtour elimination constraints

• Minimize σ𝑖𝑗 𝑐𝑖𝑗𝑋𝑖𝑗

Polynomial non-linear model: : Xik=1 if city i is in position k i in the
tour

• Matching constraints σ𝑘 𝑋𝑖𝑘 = 1 and σ𝑖 𝑋𝑖𝑘 = 1

• 𝑌𝑘 ← σ𝑖 𝑖𝑋𝑖𝑘 the index of the kth city of the tour

• Minimize σ𝑘 𝑐[𝑌𝑘,𝑌𝑘+1]

“at” operator

TSP Lib: average gap
after 10mn = 2.6%

16 24

Modeling Pattern #4
Separate commands and effects

17 24

Separate commands and effects

Multi-skill workforce scheduling

Candidate model
Skillatk= 1 agent a works on skill k at timestep t

Constraint SUMk (Skillatk) <= 1

Constraint ORk (Skillatk) == (t [Starta, Enda[)

Problem: any change of Starta will be rejected unless skills
are updated for all impacted timesteps

Agent 1

Agent 2

Agent 3

Agent 4

8h 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 20h

18 24

Separate commands and effects

Multi-skill workforce scheduling

Agent 1

Agent 2

Agent 3

Agent 4

Alternative model
SkillReadyatk= 1 agent a will works on skill k at timestep t if present

Constraint SUMk (SkillReadyatk) == 1

SkillatkAND(SkillReadyatk , t [Starta, Enda[)

Now we have no constraint between skills and worked hours
-> for any change of Starta skills are automatically updated

8h 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 20h

19 24

Separate commands and effects

Similar case: Unit Commitment Problems
• A generator is active or not, but when active the production is in [Pmin, Pmax]

• Better modeled without any constraint

ProdReadygt float(Pmin,Pmax)

Activegt bool()

ProdgtActivegt  ProdReadygt

20 24

Modeling Pattern #5
Invert constraints and objectives ?

21 24

Invert constraints and objectives

Clément Pajean

Modèle LocalSolver d'ordonnancement d'une machine unique
sous contraintes de Bin Packing

Vendredi 28

14h
Bât B TD 35

22 24

Modeling Pattern #6
Use dominance properties

23 24

Use dominance properties

Batch scheduling for N jobs
having the same due date D.
➢ Completion time of each job

will be that of the batch
selected for this job

➢ Linear late or early cost (k k)

Date variable for each batch

+ assignment of jobs to batches

+ Precedence constraints

Basic Model

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

D

Only one starting date variable

+ assignment of jobs to batches
No idle time

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

D

We can minimize a minimum

As if starting date was automatically
adjusted after each move

No start date variable

+ assignment of jobs to batches

+ penalty[k] if due date at the end of batch k

Minimize min[k in 1..5](penalty[k])

Optimal start will

position due date at

the end of a batch

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

24 24

Summary

1. Choose the right set of decision variables

2. Precompute what can be precomputed

3. Do not limit yourself to linear operators

4. Separate commands and effects

5. Invert constraints and objectives ?

6. Use dominance properties

25 24

Modeling Pattern #7
Your turn!

26 24

Why solving a TSP with LocalSolver ?
Time 𝐴, 𝐵, 𝑇 =

2 𝛼𝑥
2+𝛼𝑦

2

−2 𝛼𝑥𝛽𝑥+𝛼𝑦𝛽𝑦 + 4 𝛼𝑥𝛽𝑥+𝛼𝑦𝛽𝑦
2
−4 𝛼𝑥2+𝛼𝑦2 𝛽𝑥

2+𝛽𝑦
2−𝑉²

+ 𝑇

With 𝛼𝑥 , 𝛽𝑥 , 𝛼𝑦 , 𝛽𝑦 function of A,B and T

Kinetic TSP

27 24

Industrial « Bin-packing »
Assignment of steel orders to « slabs » whose capacity can take only 5

different values

Choose the right set of decision variables

Xij= 1 
Order i is assigned

to slab j
Model

Slabs

Yjk= 1 
Slab j takes

capacity k

Minimize total size of slabs

28 24

Choose the right set of decision variables

Change

Ejection chain

Exchange

Slabs

Industrial « Bin-packing »
Assignment of steel orders to « slabs » whose capacity can take only 5

different values

Xij= 1 
Order i is assigned

to slab j
Model Yjk= 1 

Slab j takes

capacity k

In a good model:
• when a value can be computed from others it is defined with operator

<- (it is an intermediate variable)

• moving from a feasible solution to another feasible solution only

requires modifying a small number of decision variables.

29 24

Choose the right set of decision variables

Change

Ejection chain

Exchange

Slabs

Industrial « Bin-packing »
Assignment of steel orders to « slabs » whose capacity can take only 5

different values

Xij= 1 
Order i is assigned

to slab j
Model Capak MinCapa[contentk]

“at” operator

30 24

Modeling patterns for Mixed-Integer Programming

• MIP requires linearizing non linear structures of the problem

• The polyhedron should be kept as close as possible to the
convex hull -> valid inequalities, cuts, and so on

• Symmetries should be avoided (or not…)

31 24

Modeling patterns for constraint programming

Choice of variables (integer, set variables, continuous…)

Choice of (global) constraints

Redundant constraints

Double point of view (with channeling constraints)

And so on

32 24

Modeling patterns for Local Search ?

Very little literature on this topic…

…because of the absence of model-and-run solver

→models and algorithms were designed together and not
always clearly separated

www.localsolver.com

1/18

