
1/18

LocalSolver
A New Kind of Math Programming Solver

www.localsolver.com

Thierry Benoist     Julien Darlay Bertrand Estellon 
Frédéric Gardi     Romain Megel

jdarlay@localsolver.com



2 14

Who are we ?

Diversified industrial group focused on
construction, telecom and media

Optimization subsidiary of Bouygues
15 years of experience in Operations Research

Math programming solver
for combinatorial or mixed optimization

http://www.bouygues.com

http://www.innovation24.fr

http://www.localsolver.com



3 14

LocalSolver

Solver for combinatorial & continuous optimization  
• Simple mathematical modeling formalism 

• Allows to tackle large-scale problems

• Provides good-quality solutions in short running times

Solver based on local search
• Moves based on decisions/constraints hypergraph

• Incremental evaluation: millions of moves per minute

• Adaptive, randomized, parallelized simulated annealing with restarts

Free academic licenses
Commercial licenses from 990 €



4 14

LocalSolver 4.0

Mathematical programming solver
• For combinatorial optimization 

• For numerical optimization

• For mixed-variable optimization 

• Provides solutions (upper bounds)

• Provides lower bounds 

• Infeasibility gap/proof, optimality gap/proof

Suited for large-scale non-convex optimization
• Millions of combinatorial and/or continuous variables

• Non-convex constraints and/or objectives

• Short resolution times 



5 14

Numerical optimization 

Smallest Circle
• Find the circle of minimum radius including a set of points

• Two continuous decisions: x and y

• The radius r: expression deduced from decisions

• Straightforward quadratic model

x <- float(minX, maxX);
y <- float(minY, maxY);

r2 <- max[i in 1..n] (pow(x-coordX[i],2) + pow(y-coordY[i],2));

minimize sqrt(r2);

Continuous decision

Quadratic expression



6 14

Non convex constrained optimization

K-means
• Find a partition of a set of N observations into K classes to minimize the 

within-cluster sum of squares

• NP-Hard, Quadratic



7 14

Non convex constrained optimization

for[i in 1..k][j in 1..D]{
x[i][j] <- float(mini[j],maxi[j]);

}

for[i in 1..N]{
d[i] <- min[l in 1..k](sum[j in 1..D]((x[l][j] - M[i][j])^2));

}

minimize sum[i in 1..nbLines](d[i]);

Instance k OPT* LS 4.0 GAP

iris 2 152,348 152,369 0,01%

3 78,8514 78,9412 0,11%

4 57,2285 57,3556 0,22%

5 46,4462 46,5363 0,19%

6 39,04 41,7964 7,06%

7 34,2982 34,6489 1,02%

8 29,9889 30,3029 1,05%

9 27,7861 28,0667 1,01%

10 25,834 26,0521 0,84%

K-means



8 14

Constrained combinatorial optimization

Binary feature selection
• Choose the minimum number of features

• Distinguish between positive and negative observations

• Usefull to find “patterns” inside the dataset

• NP-Hard problem

Id Diagnostic Fatigue Surgery Pain Fever

1 Negative 0 1 0 0

2 Negative 0 1 0 1

3 Negative 1 1 0 0

4 Negative 1 0 1 0

5 Positive 1 1 1 1

6 Positive 1 0 1 1

7 Positive 0 1 1 1

8 Positive 1 1 0 1



9 14

Constrained combinatorial optimization

Binary feature selection
x[1..M] <- bool();

for[i in 1..nbObs : classes[i] == 1][j in 1..nbObs: classes[j]== 0]{
constraint sum[k in 1..M: m[i][k] != m[j][k]] (x[k]) >= 1;

}

minimize sum[i in 1..M] (x[i]);

Id Diagnostic Fatigue Surgery Pain Fever

1 Negative 0 1 0 0

2 Negative 0 1 0 1

3 Negative 1 1 0 0

4 Negative 1 0 1 0

5 Positive 1 1 1 1

6 Positive 1 0 1 1

7 Positive 0 1 1 1

8 Positive 1 1 0 1



10 14

Constrained combinatorial optimization

P-Median
• Find a subset of P elements in a set of N

• Minimize the sum of distances from each element to the closest one in P

function model() { 
x[1..N] <- bool();  
constraint sum[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N]  (x[j] ? distance[i][j] : +inf); 
minimize sum[i in 1..N] (minDistance[i]); 

}



11 14

Local search 

Main idea for combinatorial optimization
• Sequential modification of a small number of decisions

• Maintaining the feasibility of current solution 

• Incremental evaluation, generally in O(1) time

→ Small improvement probability but small time and space complexity

In continuous optimization? 
• Known under another name: direct = derivative-free = zeroth-order search

• Don’t use gradients (1st order) nor Hessian (2nd order)

• Ex: Nelder-Mead simplex algorithm

• Mainly used in unconstrained non-convex optimization



12 14

Standard moves in combinatorial optimization: “k-flips”
• Could lead to infeasible solution on real instances

• If feasibility is hard to reach: slow convergence

LocalSolver maintains feasibility
• « Destroy & repair »

• Ejection chain on constraint graph

• Use of known combinatorial structure

Neighborhoods



13 14

Incremental evaluation
• “Lazy” propagation in the expression DAG

• Usage of invariants

→Millions of moves per minute

Fast exploration



14 14

Toward an “all-in-one” solver

One solver to tackle all kinds of problems
• Discrete, numerical, or mixed-variable optimization

• From small-scale to large-scale problems

• Best effort to prove infeasibility or optimality

• Able to scale heuristically faced with large problems

One solver offering the best of all optimization techniques
• Local and direct search

• Constraint propagation and inference 

• Linear and mixed-integer programming 

• Nonlinear programming (convex and non-convex)

• Dynamic programming

• Specific algorithms: paths, trees, flows, matchings, etc. 



1/18

LocalSolver
A New Kind of Math Programming Solver

www.localsolver.com

Thierry Benoist     Julien Darlay Bertrand Estellon 
Frédéric Gardi     Romain Megel

jdarlay@localsolver.com


