

A new kind of mathematical programming solver

Thierry Benoist Julien Darlay Bertrand Estellon <u>Frédéric Gardi</u> Romain Megel

> fgardi@localsolver.com www.localsolver.com

Who we are

Bouygues, one of the French largest corporation, €33 bn in revenues http://www.bouygues.com

Innovation24

Operations Research subsidiary of Bouygues 15 years of practice and research http://www.innovation24.fr

LocalSolver

Mathematical optimization solver commercialized by Innovation 24 http://www.localsolver.com

Why LocalSolver?

To answer to unmet needs in optimization

- Simple and generic (nonlinear) mathematical modeling formalism
- Provide high-quality solutions quickly
- Scalable to tackle million-variable problems
- Focus your work on modeling: no need of complex tuning

Easy to install, use, license, deploy

- For fast prototyping: LocalSolver modeling & scripting language (LSP)
- For tight integration: object-oriented C++, Java, .NET callable libraries

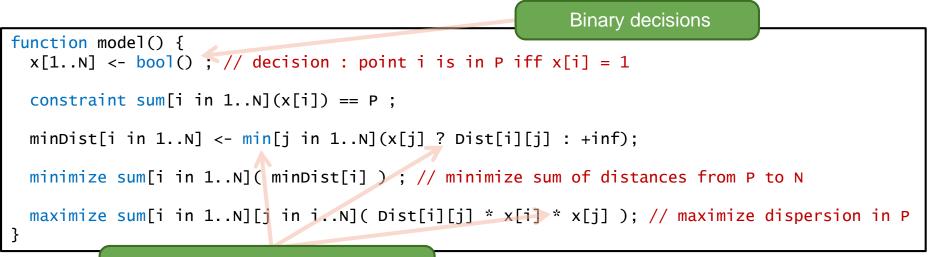
LocalSolver

- Fully portable: Windows, Linux, Mac OS (x86, x64)
- Free trial with dedicated & reactive support (even for modeling)
- Transparent licensing & pricing

Free for academics

LocalSolver

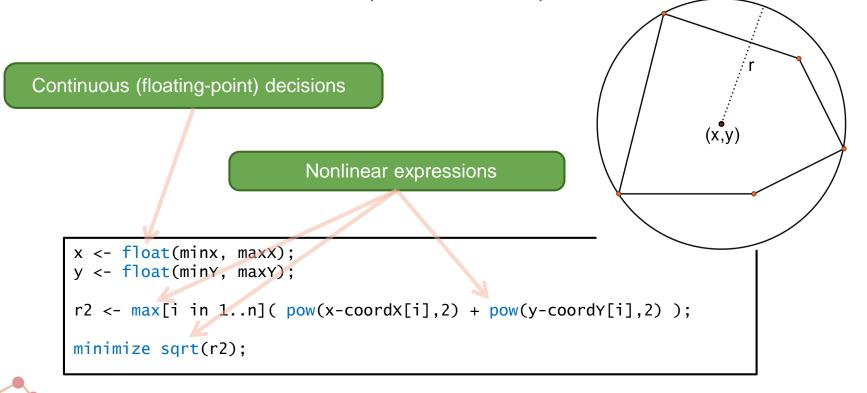
Quick tour



Combinatorial optimization

P-median: select a subset P among N points minimizing the sum of distances to each point from N to the nearest point in P

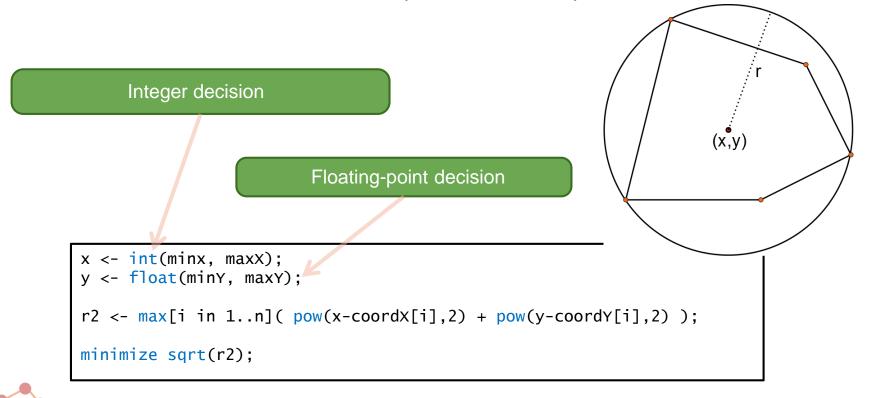
Nonlinear expressions


Nothing else to write: "model & run" approach

- Straightforward mathematical model
- Direct resolution: no tuning

LocalSolver

Numerical optimization


Smallest circle: find a circle with minimal radius which contains a set of points in the plane

Mixed-variable optimization

Smallest circle: find a circle with integer abscissa and minimal radius which contains a set of points in the plane

LocalSolver

Decisional	Arithmetic			Logical	Relational
bool	sum	sub	prod	not	==
float	min	max	abs	and	!=
int	div	mod	sqrt	or	<=
	log	exp	pow	xor	>=
	COS	sin	tan	if	<
	floor	ceil	round	array + at	>

LocalSolver

Benchmarks & Case studies

LocalSolver

Car Sequencing : schedule cars along an assembly line

10 sec	100 cars	200 cars	300 cars	400 cars	500 cars
Gurobi 5.6	140	274	Х	429	513
LocalSolver 4.5	8	5	8	10	19
60 sec	100 cars	200 cars	300 cars	400 cars	500 cars
Gurobi 5.6	3	66	1	356	513
LocalSolver 4.5	6	4	3	5	6
600 sec	100 cars	200 cars	300 cars	400 cars	500 cars
Gurobi 5.6	3	2	*0	1	20
LocalSolver 4.5	4	*0	*0	2	*0

Lower is better

LocalSolver

10

Combinatorial optimization

Instances are public: problem submitted as ROADEF-EURO Challenge in 2005 <u>http://challenge.roadef.org/2005/en</u>

Real-life car sequencing

• Until 1300 cars to sequence \rightarrow 400,000 binary decisions

Instance 022_EP_ENP_RAF_S22_J1

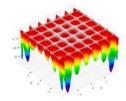
- Small instance: 80,000 variables including 44,000 binary decisions
- State of the art: 3,109 obtained by a specific local search algorithm
- Best lower bound: 3,103

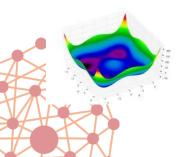
Results

- Gurobi 5.6: 3.116647e+07 in 10 min | 25,197 in 1 hour
- LocalSolver 4.5: 3,478 in 10 sec | 3,118 in 10 min

LocalSolver

Lower is better





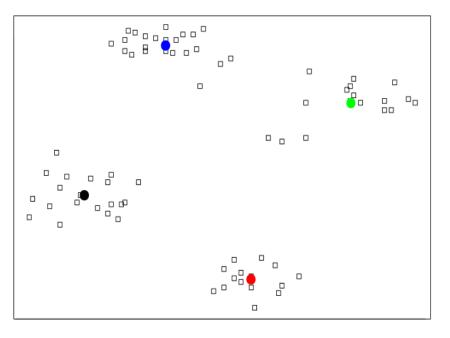
Non-convex numerical optimization

Near-optimal solutions in a few seconds on artificial landscapes Oldenhuis (2009). Test functions for global optimization algorithms. Matlab

$$f(x,y) = -20 \exp\left(-0.2\sqrt{0.5(x^2 + y^2)}\right) - \exp\left(0.5(\cos(2\pi x) + \cos(2\pi y))\right) + 20 + e.$$
gap (%) < 10⁻⁶

$$f(x,y) = -(y+47)\sin\left(\sqrt{\left|y+\frac{x}{2}+47\right|}\right) - x\sin\left(\sqrt{\left|x-(y+47)\right|}\right). \quad \text{gap (\%)} < 10^{-6}$$

$$f(x,y) = -\left|\sin(x)\cos(y)\exp\left(\left|1 - \frac{\sqrt{x^2 + y^2}}{\pi}\right|\right)\right|.$$
 gap (%) < 10⁻⁶


$$f(\mathbf{x}) = \frac{\sum_{i=1}^{n} x_i^4 - 16x_i^2 + 5x_i}{2} \quad n = 1,000,000 \quad \text{gap (\%)} < 10^{-6}$$
LocalSolver
12

K-means

- Partition observations into k classes to minimize within-clusters sum of squares
- Non-convex quadratic continuous problem
- Until 10,000 observations, 20 dimensions, k=2..50 clusters
- Direct LocalSolver model (60 sec) versus state-of-the-art CG approach (1 day)

LocalSolver

Instance	k	OPT*	LS 4.5	GAP
iris	2	152.348	152.369	0.01%
	3	78.8514	78.9412	0.11%
	4	57.2285	57.3556	0.22%
	5	46.4462	46.5363	0.19%
	6	39.04	41.7964	1.06%
	7	34.2982	34.6489	1.02%
	8	29.9889	30.3029	1.05%
	9	27.7861	28.0667	1.01%
	10	25.834	26.0521	0.84%

Lower is better

Client application panorama

- FUĴITSU
- J Supply chain optimization

Production scheduling + distribution planning

TV media planning

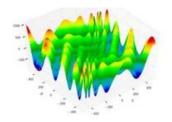
- Field service routing & scheduling
- BOUYGUES ENERGIES & SERVICES
 - Street lighting maintenance planning

- Network deployment planning
- SIEMENS

- Energy optimization for tramway lines
- Hydro valley optimization

ARMEE DE TERRE

Advertising display optimization in Paris subway Packing and transportation of military equipment LocalSolver 14 Hybrid math programming solver


For combinatorial, numerical, or mixed-variable optimization

Particularly suited for large-scale non-convex optimization

High-quality solutions in seconds without tuning

LocalSolver = LS + CP/SAT + LP/MIP + NLP

15

free trial with support – free for academics – renting licenses from 590 €/month – perpetual licenses from 9900 €

www.localsolver.com