Mathematical programming by Local Search

T. Benoist, J. Darlay, B. Estellon, F. Gardi, R.Megel

Who?

Innovation 24

Large industrial group with businesses in construction, telecom, media *www.bouygues.com*

Innovation24 Operation Research subsidiary of the Bouygues group

LocalSolver Flagship product of Innovation 24

www.localsolver.com

Why?

Practical observations

What is the most powerful tool provided by OR today? → Mixed Integer Linear Programming (MIP)

- Simple and generic formalism
- Easy-to-use solvers: "model-and-run" approach
- Now an indispensable tool for practitioners
- Constraint Programming (CP) is following the way

What do practitioners when MIP/CP solvers are ineffective? \rightarrow Local Search (LS)

- Core principle: improving the incumbent by exploring neighborhoods
- Provides quality solutions in minutes
- Extra costs (development, maintenance)

Our goals

A solver aligned with enterprise needs

- Provides high-quality solutions in seconds
- Scalable: tackles problems with millions of decisions
- Proves infeasibility or optimality when possible (best effort)

A solver aligned with practitioner needs

- « Model & Run »
 - Simple mathematical modeling formalism
 - Direct resolution: no need of complex tuning

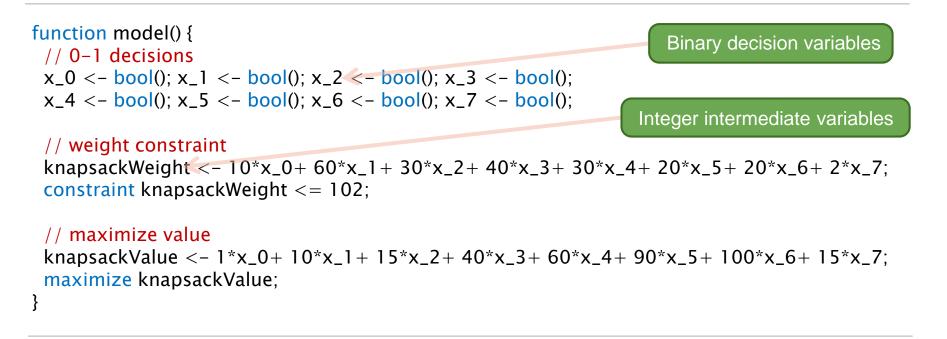
LocalSolver

- Full-version free trials with support
- Competitive pricing

http://www.localsolver.com/pricing.html

Free for academics

Quick tour



LocalSolver

7 28

Classical knapsack

8 items to pack in a sack: maximize the total value of items while not exceeding a total weight of 102 kg

You write the model: nothing else to do!

declarative approach = model & run

Multiobjective nonlinear knapsack

```
function model() {
    // 0-1 decisions
    x[0..7] <- bool();</pre>
```

Nonlinear operators: prod, min, max, and, or, if-then-else, ...

// weight constraint
knapsackWeight <- 10*x[0]+ 60*x[1]+ 30*x[2]+ 40*x[3]+ 30*x[4]+ 20*x[5]+ 20*x[6]+ 2*x[7];
constraint knapsackWeight <= 102;</pre>

// maximize value
knapsackValue <- 1*x[0]+ 10*x[1]+ 15*x[2]+ 40*x[3]+ 60*x[4]+ 90*x[5]+ 100*x[6]+ 15*x[7];
maximize knapsackValue;</pre>

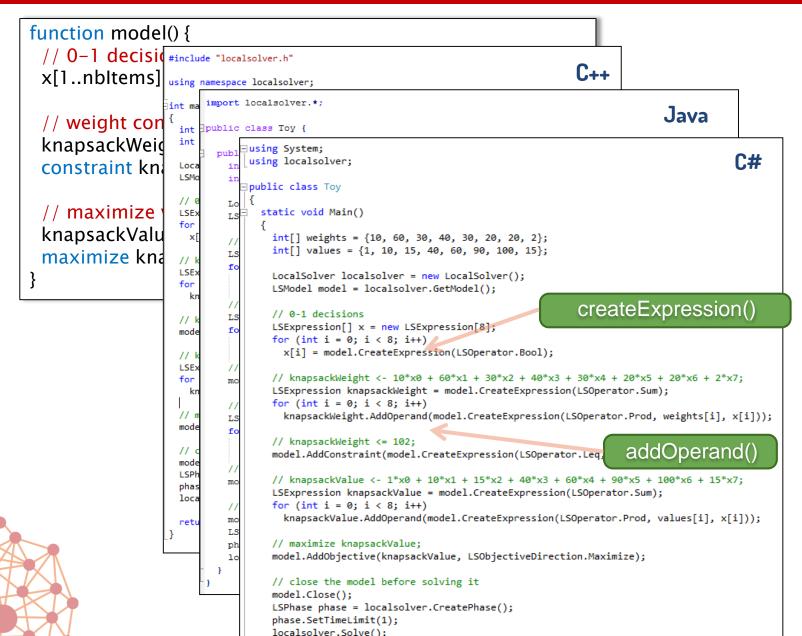
// secondary objective: minimize product of minimum and maximum values
knapsackMinValue <- min[i in 0..7](x[i] ? values[i] : 1000);
knapsackMaxValue <- max[i in 0..7](x[i] ? values[i] : 0);
knapsackProduct <- knapsackMinValue * knapsackMaxValue;
minimize knapsackProduct;</pre>

}

Lexicographic objectives

LocalSolver

Mathematical operators


	Arithmeti	С	Logical	Relational
sum	prod	abs	not	==
min	max	dist	and	!=
div	mod	exp	or	<=
sqrt	log	pow	xor	>=
log	exp	tan	if	<
COS	sin	round	array + at	>
floor	ceil			

LocalSolver

10 28

From LSP to APIs

Let's go inside

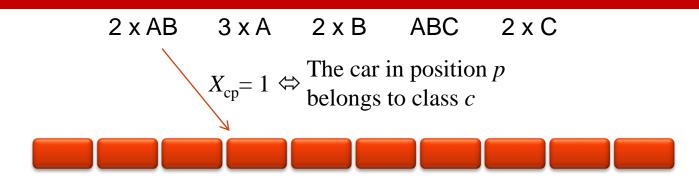
Scheduling cars on a production line

Objective = distributing options

- E.g. : at most 2 sun-roofs in any sequence of 5 cars («P/Q»)
- measure: in each window of length 5, penalty based on overcapacities = max(n-2,0) with n the number of sun-roofs.

A *class* is a set of identical cars

• Her with 3 options A, B and C: AB is the class of cars featuring options A and B



Model

X[c in 1..nbClasses][p in 1..nbPositions] <- bool();

```
for[c in 1..nbClasses]
    constraint sum[p in 1..nbPositions](X[c][p]) == card[c];
```

```
for[p in 1..nbPositions]
    constraint sum[c in 1..nbClasses](X[c][p]) == 1;
```

```
nbVehicles[o in 1..nbOptions][j in 1..nbPositions-Q[o]+1] <-
sum[k in 1..Q[o]](op[o][j+k-1]);
```

```
violations[o in 1..nbOptions][j in 1..nbPositions-Q[o]+1] <- max(nbVehicles[o][j] - P[o], 0);
```

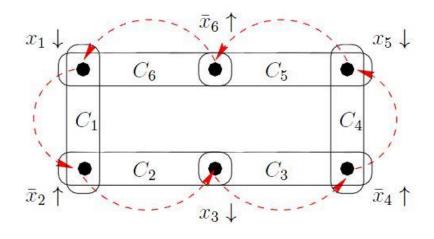
obj<- sum[o in 1..nbOptions][p in 1..nbPositions-Q[o]+1](violations[o][p]);

That's all!

Solving

How does LocalSolver solves this model?

- 1. Find an initial solution (here a random assignment of cars)
- 2. Apply generic moves

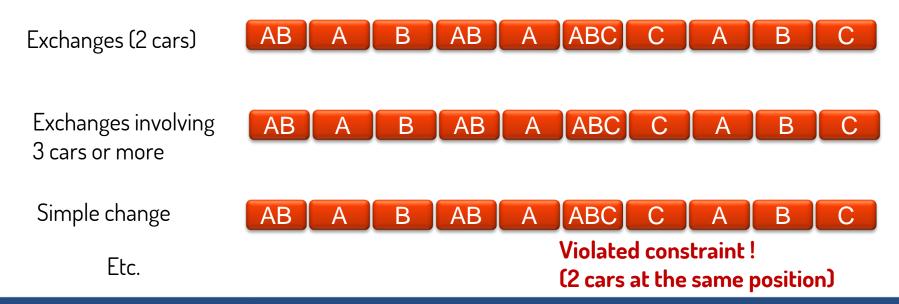

Small-neighborhood moves

Classical moves for Boolean Programming: "k-flips"

- Moves lead in majority to infeasible solutions
- Feasibility is hard to recover, implying a slow convergence
- Then no solver integrates an effective "pure local search" approach

Our moves tend to preserve the feasibility

- Can be viewed as a destroy-and-repair approach
- Can be viewed as ejection chains in the constraint hypergraph
- Can be specific to special combinatorial structures (when detected)



Solving

How does LocalSolver solves this model?

- 1. Find an initial solution (here a random assignment of cars)
- 2. Apply generic moves

- Key points :
 - Simple changes will be eliminated after a few seconds since they fail systematically.
 - The global search strategy is a randomized simulated annealing (parameterized)
 - LocalSolver launches several concurrent search (the number of threads is a parameter)
 - Some moves will be focused on windows with overcapacities

For more details

T. Benoist, B. Estellon, F. Gardi, R. Megel, K. Nouioua. LocalSolver 1.x: a black-box local-search solver for 0-1 programming. *4OR, A Quarterly Journal of Operations Research* 9(3), pp. 299-316.

http://www.localsolver.com/technology.html

Benchmarks

Car sequencing in Renault's plants

Some instances are public. This problem was submitted as ROADEF Challenge in 2005: <u>http://challenge.roadef.org/2005/en</u>

Example: instance 022_EP_ENP_RAF_S22_J1

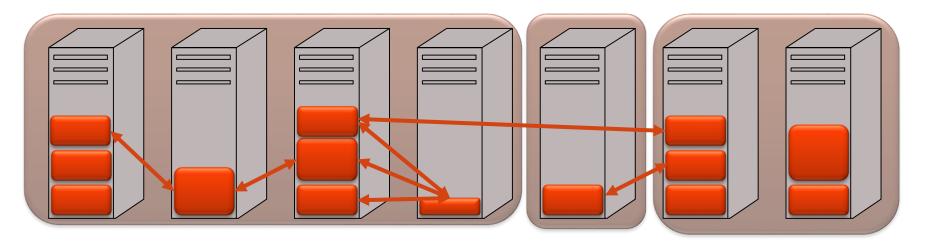
- Small instance: 80,000 variables, including 44,000 binary decisions
- State of the art: **3,109** obtained by a specific local search algorithm

LocalSolver

• Best lower bound: 3,103

Results

- Gurobi 5.0: 3.116647e+07 in 10 min | 25,197 in 1 hour
- LocalSolver 3.0: 3,478 in 10 sec | 3,118 in 10 min



2012 ROADEF Challenge

Reassignment of processes to machines, with different kinds of constraints (mutual exclusion, resources, etc.)

More than 100 000 binary decisions Only 1 day of work LocalSolver qualified for final round (ranked 24/80)

MIPLIB

Some results obtained on the hardest MIPLIB instances

- Lower objective is better
- 5 minutes time limit for both LocalSolver and MIP
- Models are not suitably modeled for LocalSolver

Minimization

Problem	Variables	LS 3.1	MIP	
ds-big	4.9 M	9 844	62 520	
ivu06-big	27.0 M	479	9 416	
ivu52	2.5 M	4 907	16 880	
mining	5.3 M	- 65 720 600	902 969 000	
ns1853823	1.1 M	2 820 000	4 670 000	
rmine14	1.3 M	- 3 470	-171	
rmine21	6.7 M	- 3 658	- 185	
rmine25	14.0 M	- 3 052	- 161	

LocalSolver

Business cases

Business cases

- Supply Chain Optimization
- Workforce planning

TV Media Planning

Logistic clustering

Street lighting maintenance planning

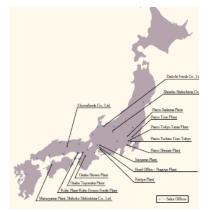
Network deployment planning

Energy optimization for tramway lines

- Placement of nuclear fuel assemblies in pools
- Painting shop scheduling

Transportation of equipment LocalSolver

Supply Chain Optimization



Global Supply Chain

- Both production and logistics optimization
- More than 10 factories, each with several production lines
- Large number of stores and distribution centers

A challenging context for LocalSolver

- 20,00,000-variable model including 3 millions binaries
- A rich model involving setup costs, delivery times, packaging...
- A vain attempt to solve the problem with MIP solvers
- LocalSolver finds a high-quality solution in minutes

Tomorrow at 8:30 in this room

Long Term Planning with LocalSolver

by Romain Megel

26 28

Roadmap

Integrating MIP, CP, SAT techniques with LS into an all-in-one solver for large-scale mixed-variable non-convex optimization

Feasibility search Optimization Model rewriting Pattern detection Simulated annealing Restarts (feas/infeas) Combinatorial Continuous Variable elimination Constraint inference Domain reduction Variable elimination Constraint inference Domain reduction Simulated annealing Restarts (feas/infeas) Small moves Compound moves Small moves Compound moves Infeasibility proof Lower bound Divide & Conquer Propagation Relaxation Tree search Interval branching Discrete propagation Dual linear relaxation		Preprocessing	Search strategy	Neighborhoods	
Domain reduction Divide & Conquer Propagation Relaxation Infeasibility proof Lower bound Tree search Discrete propagation Dual linear relaxation	•	Pattern detection Variable elimination	Restarts (feas/infeas) Randomization	Small moves Compound moves	ed Small moves Compound moves
Lower bound	Y Infeasibility proof				
	Lower bound				4

LocalSolver

28

www.localsolver.com

Customers & Partners

Academic community

technische universität dortmund

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

東北大学

東北大学

TOHOKU UNIVERSITY

POLITECNICO DI MILANO

The University of

Nottingham

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

 \mathbf{A}

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN -

Universidade Federal Fluminense

Growing community!

www.localsolver.com