
1 28

LocalSolver

T. Benoist, J. Darlay, B. Estellon, F. Gardi, R.Megel

Mathematical programming by Local Search

2 28

LocalSolver
Who?

3 28

Innovation 24

Large industrial group with businesses in
construction, telecom, media

Operation Research subsidiary
of the Bouygues group

Flagship product
of Innovation 24

www.bouygues.com

www.innovation24.fr

www.localsolver.com

4 28

LocalSolver
Why?

5 28

Practical observations

What is the most powerful tool provided by OR today?
→ Mixed Integer Linear Programming (MIP)

• Simple and generic formalism

• Easy-to-use solvers: “model-and-run” approach

• Now an indispensable tool for practitioners

• Constraint Programming (CP) is following the way

What do practitioners when MIP/CP solvers are ineffective?
→ Local Search (LS)

• Core principle: improving the incumbent by exploring neighborhoods

• Provides quality solutions in minutes

• Extra costs (development, maintenance)

6 28

Our goals

A solver aligned with enterprise needs
• Provides high-quality solutions in seconds

• Scalable: tackles problems with millions of decisions

• Proves infeasibility or optimality when possible (best effort)

A solver aligned with practitioner needs
• « Model & Run »

• Simple mathematical modeling formalism

• Direct resolution: no need of complex tuning

• Full-version free trials with support

• Competitive pricing

http://www.localsolver.com/pricing.html Free for academics

http://www.localsolver.com/pricing.html

7 28

LocalSolver
Quick tour

8 28

Classical knapsack
8 items to pack in a sack: maximize the total value of items while
not exceeding a total weight of 102 kg

function model() {
// 0-1 decisions
x_0 <- bool(); x_1 <- bool(); x_2 <- bool(); x_3 <- bool();
x_4 <- bool(); x_5 <- bool(); x_6 <- bool(); x_7 <- bool();

// weight constraint
knapsackWeight <- 10*x_0+ 60*x_1+ 30*x_2+ 40*x_3+ 30*x_4+ 20*x_5+ 20*x_6+ 2*x_7;
constraint knapsackWeight <= 102;

// maximize value
knapsackValue <- 1*x_0+ 10*x_1+ 15*x_2+ 40*x_3+ 60*x_4+ 90*x_5+ 100*x_6+ 15*x_7;
maximize knapsackValue;

}

Binary decision variables

Integer intermediate variables

You write the model: nothing else to do!
declarative approach = model & run

9 28

Multiobjective nonlinear knapsack

function model() {
// 0-1 decisions
x[0..7] <- bool();

// weight constraint
knapsackWeight <- 10*x[0]+ 60*x[1]+ 30*x[2]+ 40*x[3]+ 30*x[4]+ 20*x[5]+ 20*x[6]+ 2*x[7];
constraint knapsackWeight <= 102;

// maximize value
knapsackValue <- 1*x[0]+ 10*x[1]+ 15*x[2]+ 40*x[3]+ 60*x[4]+ 90*x[5]+ 100*x[6]+ 15*x[7];
maximize knapsackValue;

// secondary objective: minimize product of minimum and maximum values
knapsackMinValue <- min[i in 0..7](x[i] ? values[i] : 1000);
knapsackMaxValue <- max[i in 0..7](x[i] ? values[i] : 0);
knapsackProduct <- knapsackMinValue * knapsackMaxValue;
minimize knapsackProduct;

}

Lexicographic objectives

Nonlinear operators: prod, min, max,

and, or, if-then-else, …

10 28

Mathematical operators

Arithmetic Logical Relational

sum prod abs not ==

min max dist and !=

div mod exp or <=

sqrt log pow xor >=

log exp tan if <

cos sin round array + at >

floor ceil

11 28

function model() {
// 0-1 decisions
x[1..nbItems] <- bool();

// weight constraint
knapsackWeight <- sum[i in 1..nbItems](weights[i] * x[i]);
constraint knapsackWeight <= knapsackBound;

// maximize value
knapsackValue <- sum[i in 1..nbItems](values[i] * x[i]);
maximize knapsackValue;

}

From LSP to APIs

C++

Java

C#

createExpression()

addOperand()

12 28

LocalSolver
Let’s go inside

13 28

Car Sequencing

AB A B AB A ABC C A B C

Scheduling cars on a production line
Objective = distributing options

• E.g. : at most 2 sun-roofs in any sequence of 5 cars («P/Q»)

• measure: in each window of length 5, penalty based on overcapacities = max(n-2,0)
with n the number of sun-roofs.

A class is a set of identical cars
• Her with 3 options A, B and C: AB is the class of cars featuring options A and B

14 28

Model

X[c in 1..nbClasses][p in 1..nbPositions] <- bool();

for[c in 1..nbClasses]
constraint sum[p in 1..nbPositions](X[c][p]) == card[c];

for[p in 1..nbPositions]
constraint sum[c in 1..nbClasses](X[c][p]) == 1;

op[o in 1..nbOptions][p in 1..nbPositions] <-
or[c in 1..nbClasses : options[c][o]](X[c][p]);

nbVehicles[o in 1..nbOptions][j in 1..nbPositions-Q[o]+1] <-
sum[k in 1..Q[o]](op[o][j+k-1]);

violations[o in 1..nbOptions][j in 1..nbPositions-Q[o]+1] <- max(nbVehicles[o][j] - P[o], 0);

obj<- sum[o in 1..nbOptions][p in 1..nbPositions-Q[o]+1](violations[o][p]);
minimize obj;

2 x AB 3 x A 2 x B ABC 2 x C

Xcp= 1 
The car in position p

belongs to class c

That’s all!

15 28

Solving
How does LocalSolver solves this model ?

1. Find an initial solution (here a random assignment of cars)

2. Apply generic moves

16 28

Classical moves for Boolean Programming: “k-flips”
• Moves lead in majority to infeasible solutions

• Feasibility is hard to recover, implying a slow convergence

• Then no solver integrates an effective “pure local search” approach

Our moves tend to preserve the feasibility
• Can be viewed as a destroy-and-repair approach

• Can be viewed as ejection chains in the constraint hypergraph

• Can be specific to special combinatorial structures (when detected)

Small-neighborhood moves

17 28

Solving

AB A B AB A ABC C A B C

• Key points :
• Simple changes will be eliminated after a few seconds since they fail systematically.
• The global search strategy is a randomized simulated annealing (parameterized)
• LocalSolver launches several concurrent search (the number of threads is a parameter)

• Some moves will be focused on windows with overcapacities

AB A B AB A ABC C A B C

Exchanges (2 cars)

Exchanges involving
3 cars or more

AB A B AB A ABC C A B CSimple change
Violated constraint !
(2 cars at the same position)Etc.

How does LocalSolver solves this model ?
1. Find an initial solution (here a random assignment of cars)

2. Apply generic moves

18 28

For more details

T. Benoist, B. Estellon, F. Gardi, R. Megel, K. Nouioua.

LocalSolver 1.x: a black-box local-search solver for 0-1 programming.

4OR, A Quarterly Journal of Operations Research 9(3), pp. 299-316.

http://www.localsolver.com/technology.html

19 28

LocalSolver
Benchmarks

20 28

Example: instance 022_EP_ENP_RAF_S22_J1
• Small instance: 80,000 variables, including 44,000 binary decisions

• State of the art: 3,109 obtained by a specific local search algorithm

• Best lower bound: 3,103

Results
• Gurobi 5.0: 3.116647e+07 in 10 min | 25,197 in 1 hour

• LocalSolver 3.0: 3,478 in 10 sec | 3,118 in 10 min

Car sequencing in Renault’s plants
Some instances are public. This problem was submitted as ROADEF

Challenge in 2005: http://challenge.roadef.org/2005/en

http://challenge.roadef.org/2005/en

21 28

Reassignment of processes to machines, with different kinds of
constraints (mutual exclusion, resources, etc.)

2012 ROADEF Challenge

More than 100 000 binary decisions
Only 1 day of work

LocalSolver qualified for final round (ranked 24/80)

22 28

MIPLIB

Some results obtained on the hardest MIPLIB instances
• Lower objective is better

• 5 minutes time limit for both LocalSolver and MIP

• Models are not suitably modeled for LocalSolver

Problem Variables LS 3.1 MIP

ds-big 4.9 M 9 844 62 520

ivu06-big 27.0 M 479 9 416

ivu52 2.5 M 4 907 16 880

mining 5.3 M - 65 720 600 902 969 000

ns1853823 1.1 M 2 820 000 4 670 000

rmine14 1.3 M - 3 470 -171

rmine21 6.7 M - 3 658 - 185

rmine25 14.0 M - 3 052 - 161

Minimization

23 28

LocalSolver
Business cases

24 28

Business cases
Supply Chain Optimization

Workforce planning

TV Media Planning

Logistic clustering

Street lighting maintenance planning

Network deployment planning

Energy optimization for tramway lines

Placement of nuclear fuel assemblies in pools

Painting shop scheduling

Transportation of equipment

25 28

Supply Chain Optimization

Global Supply Chain
• Both production and logistics optimization

• More than 10 factories,
each with several production lines

• Large number of stores and distribution centers

A challenging context for LocalSolver
• 20,00,000-variable model including 3 millions binaries

• A rich model involving setup costs, delivery times, packaging…

• A vain attempt to solve the problem with MIP solvers

• LocalSolver finds a high-quality solution in minutes

26 28

Street lighting

Tomorrow at 8:30 in this room

Long Term Planning with LocalSolver

by Romain Megel

27 28

LocalSolver
Roadmap

28 28

Roadmap

Integrating MIP, CP, SAT techniques with LS into an all-in-one
solver for large-scale mixed-variable non-convex optimization

www.localsolver.com

1/18

30 28

Customers & Partners

31 28

Academic community

32 28

Growing community!

www.localsolver.com

1/18

