
Set-based modeling 
and black-box optimization

Thierry Benoist, Julien Darlay, Bertrand Estellon,
Frédéric Gardi, Romain Megel, Clément Pajean

Innovation 24 & LocalSolver

www.localsolver.com

JOR 7/12/2015
IHP, Paris



2 28

Who we are

Bouygues, one of the French largest 
corporation, €33 bn in revenues

Operations Research subsidiary of Bouygues
20 years of practice and research

Mathematical optimization solver 
commercialized by Innovation 24

http://www.bouygues.com

http://www.innovation24.fr

http://www.localsolver.com
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LocalSolver

Hybrid optimization solver

For combinatorial, numerical, 
or mixed-variable optimization

Suited for large-scale 
nonlinear optimization

Quality solutions quickly 
without tuning

LocalSolver
= 

LS + CP/SAT + LP/MIP + NLP

free trial with support – free for academics

www.localsolver.com
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LocalSolver origination 
Automating local search
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Local search

An iterative improvement method
• Explore a neighborhood of the current solution

• Smaller or larger neighborhoods

→ Incomplete exploration of the solution space 

Essential in combinatorial optimization 
• Hidden behind many textbook algorithms (ex: simplex, max flow)

• In the heart of all metaheuristic approaches 

• Proved to be inefficient in the worst case

• Largely used because very effective in practice
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Why local search? 

When it is hopeless to enumerate
• Large-scale combinatorial problems

• When relaxation or inference brings nothing
(ex: linear relaxation is very fractional)

• When computing relaxation or inference is costly  

Adapted to client needs  
• Good-quality optima satisfy them

• Fast: each iteration runs in sublinear or even constant time

→ Solutions in short running times + ability to scale
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Existing tools

Libraries and frameworks
• Complex to handle

• Limited to practitioners having good programming skills

• Don’t address key points (ex: moves)

Solvers integrating “pure” local search
• Pioneering works in SAT community

• MIP & CP: a few attempts but a limited impact (Nonobe & Ibaraki 2001)

• MIP & CP: a lot of heuristic ingredients but no “pure” local search
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LocalSolver project 

2007: launch
• Define a generic modeling formalism (close to MIP) suited for a local search-

based resolution (model)

• Develop an effective solver based on pure local search with first principle: “to 
do what an expert would do” (run)

2010: first release
• Large-scale combinatorial problems – especially assignment, packing, 

covering, partitioning problems – out of scope of classical solvers

• Integration in Innovation 24’s optimization solutions

• First uses outside Innovation 24
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LocalSolver today
Quick tour
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P-median 

Select a subset P among N points minimizing the sum of distances 
from each point in N to the nearest point in P

function model() {

x[1..N] <- bool() ; // decisions: point i belongs to P if x[i] = 1

constraint sum[i in 1..N]( x[i] ) == P ; // constraint: P points selected among N

minDist[i in 1..N] <- min[j in 1..N]( x[j] ? Dist[i][j] : InfiniteDist ) ; // expressions: distance to the nearest point in P 

minimize sum[i in 1..N]( minDist[i] ) ; // objective: to minimize the sum of distances

}

Nothing else to write: “model & run” approach
• Straightforward, natural mathematical model

• Direct resolution: no tuning 
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Design optimization

Maximize the volume of a bucket with a given surface of metal*

*http://datagenetics.com

𝑟

𝑅

ℎ

𝑉 =
𝜋ℎ

3
(𝑅2 + 𝑅𝑟 + 𝑟2)

S = 𝜋𝑟2 + 𝜋(𝑅 + 𝑟) 𝑅 − 𝑟 2 + ℎ2

function model() {

R <- float(0,1);
r <- float(0,1);
h <- float(0,1);

V <- PI * h / 3.0 * (R*R + R*r + r*r);
S <- PI * r * r + PI*(R+r) * sqrt(pow(R-r,2) + h*h);

constraint S <= 1;
maximize V;

}



12 28

Mathematical operators

Arithmetic Logical Relational

sum sub  prod  not ==

min max abs and !=

div mod sqrt or <=

log exp pow xor >=

cos sin tan if-then-else <

floor ceil round array + at >

piecewise

Decisional

bool

float

int

list
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Large-scale instances  
• Until 1,300 vehicles to sequence: 400,000 binary decisions

Instance with only 540 vehicles
• Small instance: 44,000 binary decisions

• State of the art: 3,109 (winner of the Challenge)

• Lower bound: 3,103

Results
• Gurobi 5.5: 3.027e+06 in 10 min | 194,161 in 1 hour

• LocalSolver 5.0: 3,140 in 10 sec | 3,113 in 10 min

Car sequencing
2005 ROADEF Challenge: http://challenge.roadef.org/2005/en

Minimization

http://challenge.roadef.org/2005/en
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Supply chain optimization

Global supply chain optimization
• Both production and logistics optimization

• 10 factories, each with several production lines

• Large number of stores and distribution centers

A challenging context for LocalSolver
• 20,000,000 expressions including 3 million binaries

• Rich model involving setup costs, delivery times, packaging, etc.

• Vain attempts to solve the problem with MIP solvers

• LocalSolver finds high-quality solutions in 5 minutes
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Application panorama
TV media planning

Outdoor & indoor advertising

Logistic clustering and routing

Road maintenance planning

Network deployment planning

Loan assembling optimization

Placement of nuclear fuel assemblies in pools

Airline network management

Weapon resource allocation

Packing and transportation of military equipment
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Where LocalSolver goes?
Novelties in version 5.5
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Structured decisional operator list(n)
• Order a subset of values in domain {0, …, n-1}

• Each value is unique in the list

Classical operators to interact with “list” 
• count(u): number of values selected in the list

• get(u,i) or u[i]: value at index i in the list 

• indexOf(u,v): index of value v in the list

• contains(u,v): equivalent to “indexOf(u,v) != -1”

• disjoint(u1, u2, …, uk): true if u1, u2, …, uk are pairwise disjoint 

• partition(u1, u2, …, uk): true if u1, u2, …, uk induce a partition of {0, …, n-1}

Set-based modeling
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Traveling salesman

function model() {

x <- list(N) ; // order n cities {0, ..., n-1} to visit

constraint count(x) == N; // exactly n cities to visit

minimize sum[i in 1..N-1]( Dist[ x[i-1] ][ x[i] ] ) 
+ Dist[ x[N-1] ][ x[0] ] ; // minimize sum of traveled distances

}

Could you imagine a simpler model?
• Natural declarative model: straightforward to understand

• Common set-oriented concepts: easy to learn

• Even easier for people with basic programming skills

• Compact: linear in the size of input  highly scalable
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Traveling salesman
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TSP: real-life 200-client instance 
LocalSolver 5.0 vs 5.5 (with operator list)

Best known solution 

LS 5.5

LS 5.0
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Vehicle routing
function model() {

x[1..K] <- list(N) ; // for each truck, order the clients to visit

constraint partition( x[1..K] ); // each client is visited once

distances[k in 1..K] <- sum[i in 1..N-1]( dist( x[k][i-1], x[k][i]) ) 
+ dist( x[k][N-1], x[k][0] ); // traveled distance for each truck

minimize sum[k in 1..K]( distances[k] ); // minimize total traveled distance

}

To go further, to make it simpler
• Sets (unordered) versus lists (ordered)

• Collections of objects instead of values

• Ability to iterate and project over collections (lambda expressions)
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CVRP benchmarks

CVRP - instances A
• 32 to 80 clients, 10 trucks max.

• 27 instances 

• 5 minutes of running time

• LS binary: 3 % avg. opt. gap

• LS list: 1 % avg. opt. gap

CVRP - instances X100-500
• 100 to 500 clients, 138 trucks max.

• 67 instances 

• 5 minutes of running time

• LS binary: N/A

• LS list: 9 % avg. opt. gap
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CVRPTW benchmarks

CVRPTW - instances Solomon R100
• 101 to 112 clients, 19 trucks max.

• 13 instances 

• 5 minutes of running time

• LS binary: N/A

• LS list: 3 % avg. opt. gap

CVRPTW - instances Solomon R200
• 201 to 208 clients, 4 trucks max.

• 8 instances 

• 5 minutes of running time

• LS binary: N/A

• LS list: 8 % avg. opt. gap
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Black-box optimization

Context
• Unknown objective (oracle)

• Costly to evaluate

• Derivative-free 

• Continuous & integer decisions

• Bounds on decisions

Many applications in engineering
• Multidisciplinary/parametric optimization

• Simulation optimization (noisy, nondeterministic)

 Design optimization of materials/systems: mechanics, electricity, logistics, etc.  



24 28

Learning

Learn the objective function landscape
• Objective landscape modeled by Radial Basis Functions

• Several models are built with different techniques/parameters

• Automatic selection of the most promising models for optimization

Objective Function Objective Model
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Optimization

Exploitation & diversification
• Exploitation: optimize over the objective model

• Diversification: explore new promising regions  

 NLP subproblems solved through LocalSolver techniques: 
local & direct search, gradient-based line search, etc. 

Objective Function Objective Model
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Benchmark

Instances
• 25 instances from the recent paper by Costa and Nannicini. 

RBFOpt: an open-source library for black-box optimization with costly 
function evaluations. Optimization Online. (under review)

• 20 runs per instance, 150 calls max. to the black-box per run

• Numerical precision: 1e-6 

Preliminary results
• RBFOpt: 345 opt. solutions found, 82 calls avg. per run

• LocalSolver: 310 opt. solutions found, 94 calls avg. per run

• NOMAD (GERAD): 170 opt. solutions found



27 28

Benchmark
LocalSolver RBFOpt NOMAD

Instance #sol Avg. Eval Error (%) #sol Avg. Eval Error (%) #sol Error (%)

branin 20 23 0,0 20 31 0,0 20 0,0

camel 20 26 0,0 20 34 0,0 19 4,0

ex_4_1_1 20 11 0,0 20 14 0,0 20 0,0

ex_4_1_2 20 51 0,0 20 9 0,0 20 0,0

ex_8_1_1 20 10 0,0 20 7 0,0 19 2,5

ex_8_1_4 20 44 0,0 20 25 0,0 0 341,5

gear 20 34 0,0 20 7 0,0 0 388,0

goldsteinprice 18 122 0,1 20 53 0,0 16 450,0

hartman3 8 130 1,2 20 45 0,0 15 9,4

hartman6 8 121 11,0 17 101 5,1 0 5,7

least 0 150 1308,0 0 150 204,7 0 129,0

nvs04 20 70 0,0 19 64 194,4 4 9997,0

nvs06 16 127 1,0 0 150 13,3 9 8,7

nvs09 20 15 0,0 20 14 0,0 16 1,2

nvs16 8 138 949,0 20 49 0,0 9 885,0

perm0_8 0 150 109,0 0 150 147,2 0 412,0

perm_6 0 150 2424958,0 0 150 44134,7 0 311032,0

rbrock 20 83 0,0 5 136 10,8 0 43,2

schoen_10_1 4 145 66,7 11 139 28,8 0 119,5

schoen_10_2 0 150 96,2 14 133 1,6 0 115,7

schoen_6_1 18 101 100,8 18 101 1,8 0 51,5

schoen_6_2 10 120 28,0 16 102 32,7 0 54,2

shekel10 8 118 29,6 13 107 60,1 0 56,9

shekel5 6 127 51,6 7 126 51,7 1 46,1

shekel7 6 127 28,5 5 137 47,0 2 47,9

310 345 170
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Roadmap

John N. Hooker (2007)
“Good and Bad Futures for Constraint Programming (and Operations Research)”

Constraint Programming Letters 1, pp. 21-32

“Since modeling is the master and computation the servant, no computational 
method should presume to have its own solver. 

This means there should be no CP solvers, no MIP solvers, and no SAT solvers. All of 
these techniques should be available in a single system to solve the model at hand.

They should seamlessly combine to exploit problem structure. Exact methods should 
evolve gracefully into inexact and heuristic methods as the problem scales up.”
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