
www.localsolver.com

1/18

Thierry Benoist Julien Darlay Bertrand Estellon
Frédéric Gardi Romain Megel Karim Nouioua

2 17

Focused on business needs

A solver aligned with enterprise needs
• Provides high-quality solutions in seconds

• Scalable: tackles problems with millions of decisions

• Proves optimality when possible (best effort)

A solver aligned with practitioner needs
• “Model & Run”

• Simple mathematical modeling formalism

• Direct resolution: no need of complex tuning

• Simple and transparent pricing

 Free for academics

3 17

Main features

New-generation solver
• Computing good-quality solutions by local search

• Computing lower bounds separately (inference, relaxation, cuts)

High-end software
• An innovative modeling language for fast prototyping

• Lightweight object-oriented APIs: a few classes only

• Reliable and robust: quality through drastic continuous integration

• Fully portable: Windows, Linux, Mac OS (x86, x64)

• Reactive support, realized by developers themselves (even for academics)

4 17

Why local search?

5 17

Technology

 Autonomous local search
• Generic moves based on decisions/constraints hypergraph

• Incremental evaluation: million moves per minute

• Adaptive simulated annealing through learning

• Multithreaded search: ready for many-core world

 Efficient C++ implementation
• Preprocessing: model reduction & reformulation

• Low-level cache-aware code optimization
• Highly-optimized memory management

6 17

Knapsack
8 items to pack in a sack: maximize the total value of items while
not exceeding a total weight of 102 kg

function model() {
 // 0-1 decisions
 x_0 <- bool(); x_1 <- bool(); x_2 <- bool(); x_3 <- bool();
 x_4 <- bool(); x_5 <- bool(); x_6 <- bool(); x_7 <- bool();

 // weight constraint
 knapsackWeight <- 10*x_0+ 60*x_1+ 30*x_2+ 40*x_3+ 30*x_4+ 20*x_5+ 20*x_6+ 2*x_7;
 constraint knapsackWeight <= 102;

 // maximize value
 knapsackValue <- 1*x_0+ 10*x_1+ 15*x_2+ 40*x_3+ 60*x_4+ 90*x_5+ 100*x_6+ 15*x_7;
 maximize knapsackValue;
}

Binary decision variables

Integer intermediate variables

The user writes the model: nothing else to do!
declarative approach = model & run

7 17

Multiobjective knapsack

function model() {
 // 0-1 decisions
 x[0..7] <- bool();

 // weight constraint
 knapsackWeight <- 10*x[0]+ 60*x[1]+ 30*x[2]+ 40*x[3]+ 30*x[4]+ 20*x[5]+ 20*x[6]+ 2*x[7];
 constraint knapsackWeight <= 102;

 // maximize value
 knapsackValue <- 1*x[0]+ 10*x[1]+ 15*x[2]+ 40*x[3]+ 60*x[4]+ 90*x[5]+ 100*x[6]+ 15*x[7];
 maximize knapsackValue;

 // secondary objective: minimize product of minimum and maximum values
 knapsackMinValue <- min[i in 0..7](x[i] ? values[i] : 1000);
 knapsackMaxValue <- max[i in 0..7](x[i] ? values[i] : 0);
 knapsackProduct <- knapsackMinValue * knapsackMaxValue;
 minimize knapsackProduct;
}

Lexicographic objectives

Nonlinear operators: prod, min, max,

and, or, if-then-else, …

8 17

Mathematical operators

Arithmetic Logical Relational Hybrid

sum prod not == if

min max and != array + at

div mod or <=

abs sqrt xor >=

<

>

9 17

function model() {
 // 0-1 decisions
 x[1..nbItems] <- bool();

 // weight constraint
 knapsackWeight <- sum[i in 1..nbItems](weights[i] * x[i]);
 constraint knapsackWeight <= knapsackBound;

 // maximize value
 knapsackValue <- sum[i in 1..nbItems](values[i] * x[i]);
 maximize knapsackValue;
}

Modeling APIs

C++

Java

C#

createExpression

addOperand

10 17

Scheduling cars along painting and assembly lines
• Classical car sequencing = space car options along the line

• No more than K consecutive cars with the same color

• Minimize the number of paint color changes as secondary objective

Large-instances to tackle
• 1300 cars to sequence → 400 000 binary decisions

• MIP or CP solvers unable to find feasible solutions after hours

• LocalSolver provides much better solutions than Renault in seconds

Car sequencing in Renault’s plants

AB A B AB A ABC C A B C

11 17

 Reassignment of processes to machines, with different kinds of
constraints (mutual exclusion, resources, etc.)

2012 ROADEF/EURO Challenge

More than 100 000 binary decisions
LSP model with 200 lines, written in 1 day of work

LocalSolver qualified for final round (ranked 25/80)

12 17

When using LocalSolver?
• MIP solvers find no (quality) solution

• MIP solvers find quality solutions but too slowly

• Writing MIP models is complicated due to nonlinearities

• CP seems to be a better choice than MIP

LocalSolver is suited for:
• Nonlinear assignment: car sequencing, frequency assignment

• Packing & Covering: media planning, machine scheduling, graph partitioning

• Facility location, logistic clustering, telecom network optimization

• Workforce scheduling, group planning, nurse rostering

Application guide

13 17

Customers & Partners

14 17

Academic Users

15 17

Fast-growing community!

16 17

LocalSolver 3.0 : October 2012
• Floating-point coefficients

• New math operators: log, exp, pow, cos, sin, tan

• Major performance improvements: new local-search moves

• Improved preprocessing (model reduction & reformulation)

LocalSolver 4.0 : March 2013
• Binary + continuous decisions

• Local-search moves on continuous decisions

• Better capabilities for proving optimality or infeasibility

→ Large-scale mixed-variable nonlinear programming (MINLP)

Roadmap

17 17

For more details

T. Benoist, B. Estellon, F. Gardi, R. Megel, K. Nouioua.

LocalSolver 1.x: a black-box local-search solver for 0-1 programming.

4OR, A Quarterly Journal of Operations Research 9(3), pp. 299-316.

http://www.localsolver.com

 fgardi@localsolver.com

