

LocalSolver 4.0 Hybrid Math Programming

<u>Thierry Benoist</u> <u>Julien Darlay</u> Bertrand Estellon Frédéric Gardi Romain Megel

www.localsolver.com

Bouygues, one of the French largest corporation, €33 bn in revenues

LocalSolver

LocalSolver, mathematical optimization solver commercialized by Innovation 24

Agenda

LocalSolver

- Quick introduction
- Examples
- Technology
- Benchmarks
- Roadmap

LocalSolver in practice

LocalSolver

Solver for combinatorial & continuous optimization

- Provides good-quality solutions in short running times
- Allows to tackle large-scale problems
- Simple mathematical modeling formalism
 - C++, Java, .NET APIs
 - Modeling Language (LSP)

Solver based on local search

- Moves based on decisions/constraints hypergraph
- Incremental evaluation: millions of moves per minute
- Adaptive, randomized, parallelized simulated annealing with restarts

Free academic licenses Commercial licenses from 990 €

LocalSolver 4.0

Mathematical programming solver

- For combinatorial optimization
- For numerical optimization
- For mixed-variable optimization
- Provides solutions (upper bounds)
- Provides lower bounds
- Infeasibility gap/proof, optimality gap/proof

Suited for large-scale non-convex optimization

- Millions of combinatorial and/or continuous variables
- Non-convex constraints and/or objectives
- Short resolution times

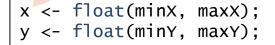
Examples

Numerical optimization

Smallest Circle

- Find the circle of minimum radius including a set of points
- Two continuous decisions: **x** and **y**
- The radius *r*: expression deduced from decisions
- Straightforward quadratic model

Continuous decision



r2 <- max[i in 1..n] (pow(x-coordx[i],2) + pow(y-coordY[i],2));

minimize sqrt(r2);

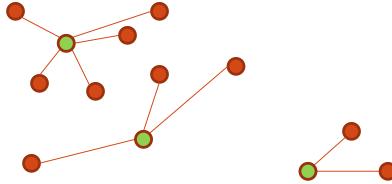
LocalSolver

(x,y)

Constrained combinatorial optimization

P-Median

- Find a subset of P elements in a set of N
- Minimize the sum of distances from each element to the closest one in P



function model() {
 x[1..N] <- bool();
 constraint sum[i in 1..N] (x[i]) == P;</pre>

```
minDistance[i in 1..N] <- min[j in 1..N] (x[j]? distance[i][j]: +inf);
minimize sum[i in 1..N] (minDistance[i]);
```


Local Search

Local Search

Main idea for combinatorial optimization

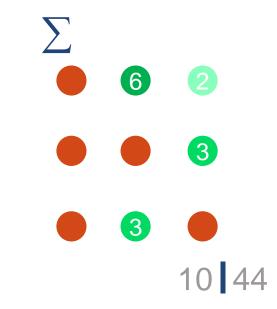
- Sequential modification of a small number of decisions
- Maintaining the feasibility of current solution
- Incremental evaluation, generally in O(1) time

 \rightarrow Small improvement probability but small time and space complexity

LocalSolver

A three layers architecture

- Moves based on mathematical model
- Incremental evaluation of solutions
- Heuristic to drive the search



Moves

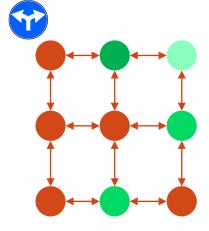
Standard moves in combinatorial optimization: "k-flips"

- Could lead to infeasible solution on real instances
- If feasibility is hard to reach: slow convergence

LocalSolver maintains feasibility

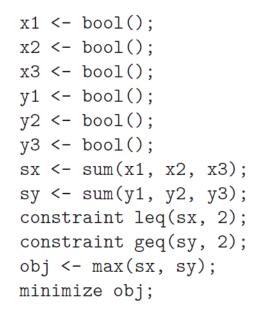
- « Destroy & repair »
- Ejection chain on constraint graph
- Use of known combinatorial structure

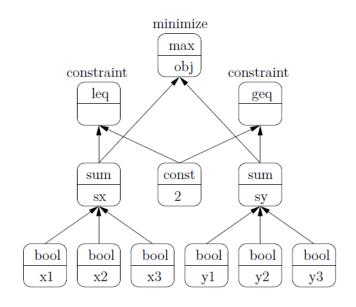
```
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;
...
```



LocalSolver

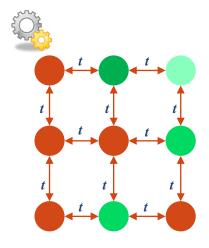
Fast exploration





Incremental evaluation

- "Lazy" propagation in the expression DAG
- Usage of invariants
- \rightarrow Millions of moves per minute



Heuristic

Online learning of moves

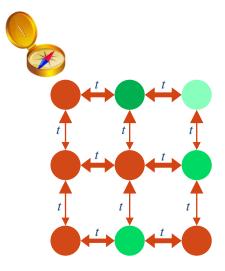
- Discard inefficient moves
- Improve efficient moves selection

Simulated annealing

- Handle non smooth objectives
- Allow degrading solutions

«*Restart* » + parallel search

- Avoid local optima
- Improve search space coverage



LocalSolver

Benchmarks

Combinatorial optimization

Car Sequencing : schedule cars among an assembly line

10 sec	100	200	300	400	500
Gurobi 5.5	140	274	Х	429	513
LocalSolver 4.0	8	5	8	10	19
60 sec	100	200	300	400	500
Gurobi 5.5	3	66	1	356	513
LocalSolver 4.0	6	4	3	5	6
600 sec	100	200	300	400	500
Gurobi 5.5	3	2	*0	1	20
LocalSolver 4.0	4	*0	*0	2	*0

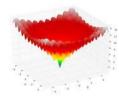
LocalSolver

15

Non constrained non convex optimization

Quasi optimal solutions in a few seconds on several artificial landscapes from the literature

Oldenhuis (2009). Test functions for global optimization algorithms. Matlab



$$f(x,y) = -20 \exp\left(-0.2\sqrt{0.5(x^2 + y^2)}\right) -\exp\left(0.5(\cos(2\pi x) + \cos(2\pi y))\right) + 20 + e.$$
 gap (%) < 10⁻⁶

$$f(x,y) = -(y+47)\sin\left(\sqrt{\left|y+\frac{x}{2}+47\right|}\right) - x\sin\left(\sqrt{\left|x-(y+47)\right|}\right). \quad \text{gap (\%)} < 10^{-4}$$

$$f(x,y) = -\left|\sin\left(x\right)\cos\left(y\right)\exp\left(\left|1 - \frac{\sqrt{x^2 + y^2}}{\pi}\right|\right)\right|. \qquad \text{gap (\%)} < 10^{-4}$$

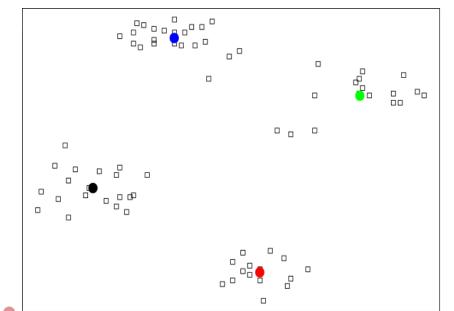
$$f(\mathbf{x}) = \frac{\sum_{i=1}^{n} x_i^4 - 16x_i^2 + 5x_i}{2} \quad n = 10 \rightarrow 10000 \quad \text{gap (\%)} < 10^{-6} \rightarrow 10^{-1}$$

$$LocalSolver \quad 16 \quad 44$$

Combinatorial / Continuous optimization

K-means

- Machine learning problem
- NP-Hard, Quadratic
- Same solutions in comb. or cont.



Instance	k	OPT*	LS 4.0	GAP
ruspini	2	89337	89337,9	0,00%
	3	51063,4	51063,5	0,00%
	4	12881	12881,1	0,00%
	5	10126,7	10126,8	0,00%
	6	8575,41	8670,86	1,11%
	7	7126,2	7159,13	0,46%
	8	6149,64	6158,26	0,14%
	9	5181,64	5277,11	1,84%
	10	4446,28	4856,98	9,24%
iris	2	152,348	152,369	0,01%
	3	78,8514	78,9412	0,11%
	4	57,2285	57,3556	0,22%
	5	46,4462	46,5363	0,19%
	6	39,04	41,7964	7,06%
	7	34,2982	34,6489	1,02%
	8	29,9889	30,3029	1,05%
	9	27,7861	28,0667	1,01%
	10	25,834	26,0521	0,84%
glass	20	114,646	120,048	4,71%
	30	63,2478	74,1251	17,20%
	40	39,4983	58,3912	47,83%
	50	26,7675	52,4679	96,01%

*[Aloise et al. 2012]

LocalSolver

Toward an "all-in-one" solver

One solver to tackle all kinds of problems

- Discrete, numerical, or mixed-variable optimization
- From small-scale to large-scale problems
- Best effort to prove infeasibility or optimality
- Able to scale heuristically faced with large problems

One solver offering the best of all optimization techniques

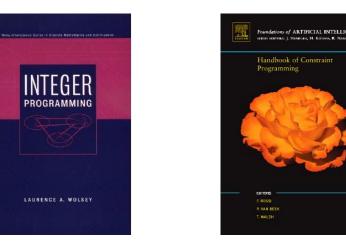
- Local and direct search
- Constraint propagation and inference
- Linear and mixed-integer programming
- Nonlinear programming (convex and non-convex)
- Dynamic programming
- Specific algorithms: paths, trees, flows, matchings, etc.

LocalSolver in practice

How to migrate to LocalSolver

Modeling patterns ?

A classic topic in MIP or CP



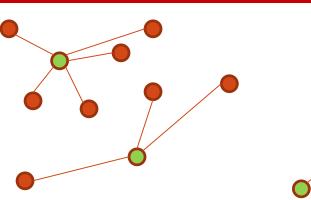
Very little literature on modeling for Local Search...
...because of the absence of model-and-run solver
→ models and algorithms were designed together and not always clearly separated

Modeling Pattern #1

Choose the right set of decision variables

Choose the right set of decision variables

Select a set S of P cities among N Minimizing the sum of distances from each city to the closest city in S



```
function model() {
```

X[1..N] <- bool(); // x[i] = 1 if hospital in city i Y[1..N][1..N] <- bool(); // y[i][j] = 1 if city i is assigned to hospital j

```
for[i in 1..N]
```

```
constraint sum[j in 1..N] Y[i][j] == 1;
```

```
for[i in 1..N][j in 1..N]
constraint Y[i][j] <= X[j];
```

```
constraint sum[i in 1..N] (X[i]) == P;
```

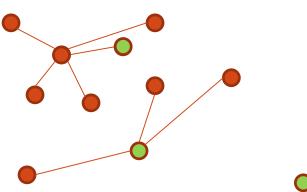
minimize sum[i in 1..N][j in 1..N] (distance[i][j]*Y[i][j]);

Given the values of variables Y, I can infer the values of X Given the values of variables X, I can infer the values of Y

Too many decision variables!

First attempt: keep only decision variables Y

Select a set S of P cities among N Minimizing the sum of distances from each city to the closest city in S



```
function model() {
    X[1..N] <- bool(); // x[i] = 1 if hospital in city i
    Y[1..N][1..N] <- bool(); // y[i][j] = 1 if city i is assigned to hospital j</pre>
```

```
for[i in 1..N]
```

```
constraint sum[j in 1..N] Y[i][j] == 1;
```

```
for[j in 1..N]
```

X[j] <- or[j in 1..N] (Y[i][j]);

```
constraint sum[i in 1..N] (X[i]) == P;
```

We can introduce non-decision expressions

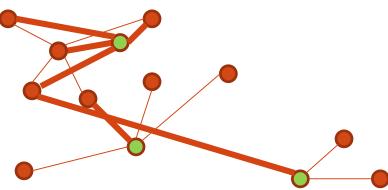
```
We can use non-linear operators
```

```
minimize sum[i in 1..N][j in 1..N] (distance[i][j]*Y[i][j]);
```


How many variables need to be changed to move from a feasible solution to another feasible solution ?

First attempt: keep only decision variables Y

Select a set S of P cities among N Minimizing the sum of distances from each city to the closest city in S



```
function model() {
    X[1..N] <- bool(); // x[i] = 1 if hospital in city i
    Y[1..N][1..N] <- bool(); // y[i][j] = 1 if city i is assigned to hospital j</pre>
```

```
for[i in 1..N]
```

```
constraint sum[j in 1..N] Y[i][j] == 1;
```

```
for[j in 1..N]
```

```
X[j] <- or[j in 1..N] (Y[i][j] <= X[j];
```

```
constraint sum[i in 1..N] (X[i]) == P;
```

We can introduce non-decision expressions

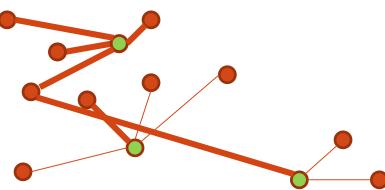
```
We can use non-linear operators
```

```
minimize sum[i in 1..N][j in 1..N] (distance[i][j]*Y[i][j]);
```


How many variables need to be changed to move from a feasible solution to another feasible solution ?

First attempt: keep only decision variables Y

Select a set S of P cities among N Minimizing the sum of distances from each city to the closest city in S



```
function model() {
    X[1..N] <- bool(); // x[i] = 1 if hospital in city i
    Y[1..N][1..N] <- bool(); // y[i][j] = 1 if city i is assigned to hospital j</pre>
```

```
for[i in 1..N]
```

```
constraint sum[j in 1..N] Y[i][j] == 1;
```

for[j in 1..N]

```
X[j] <- or[j in 1..N] (Y[i][j] <= X[j];
```

```
constraint sum[i in 1..N] (X[i]) == P;
```

We can introduce non-decision expressions

25

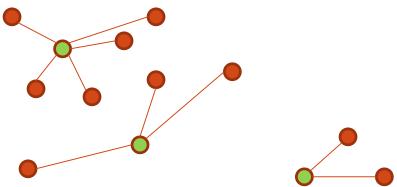
```
We can use non-linear operators
```

```
minimize sum[i in 1..N][j in 1..N] (distance[i][j]*Y[i][j]);
```


How many variables need to be changed to move from a feasible solution to another feasible solution ?

Second attempt: keep only decision variables X

Select a set S of P cities among N Minimizing the sum of distances from each city to the closest city in S



```
function model() {
    x[1..N] <- bool();
    constraint sum[i in 1..N] (x[i]) == P;</pre>
```

Even conditional expressions are allowed !

```
minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize sum[i in 1..N] (minDistance[i]);
```


- Now the hamming distance between two feasible solutions is 2
- We have only N decision variables

Modeling Pattern #1

Choose the right set of decision variables

LocalSolver

2

A good model defines a good search space

- Intermediate variables are inferred from decisions
- Logical and non-linear expressions available
- No artificial variables needed

Modeling Pattern #2

Do not limit yourself to linear operators

Do not limit yourself to linear operators

TRAVELING SALESMAN PROBLEM

MIP approach: X_{ij} =1 if city j is after city i in the tour

- Matching constraints $\sum_{j} X_{ij} = 1$ and $\sum_{i} X_{ij} = 1$
- Plus an exponential number of subtour elimination constraints
- Minimize $\sum_{ij} c_{ij} X_{ij}$

Polynomial non-linear model: : X_{ik} =1 if city *i* is in position *k* in the tour

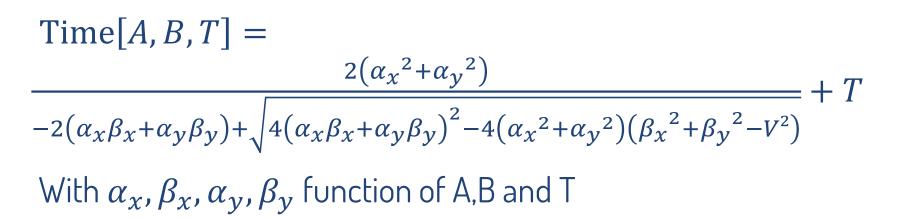
- Matching constraints $\sum_k X_{ik} = 1$ and $\sum_i X_{ik} = 1$
- $Y_k \leftarrow \sum_i iX_{ik}$ the index of the kth city of the tour
- Minimize $\sum_k c_{[Y_k, Y_{k+1}]}$

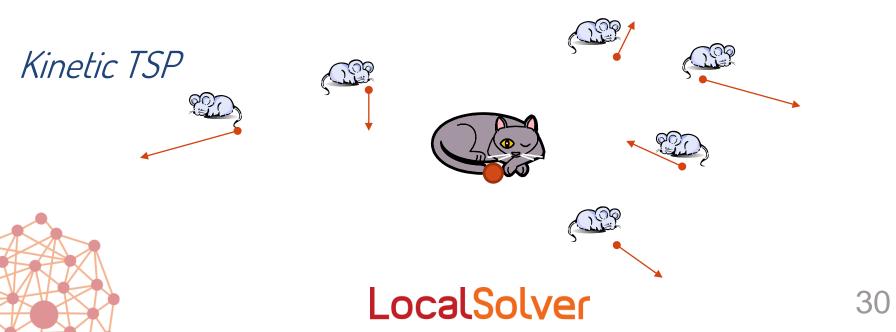
"at" operator

TSP Lib: average gap after 10mn = 2.6%

LocalSolver

Why solving a TSP with LocalSolver ?





Modeling Pattern #2

Do not limit yourself to linear operators

Even arrays are allowed (indexing operator)

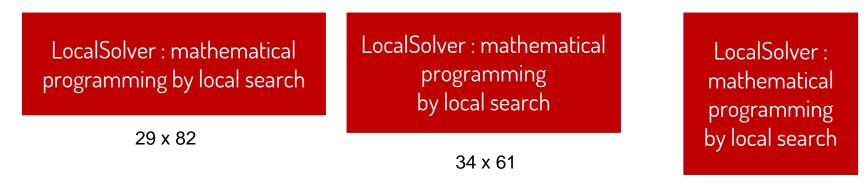
- Yield very compact models
- Can model any relation between two variables

Modeling Pattern #3

Precompute what can be precomputed

Precompute what can be precomputed

Document processing : in a table, a text cell has several possible *height x width* configurations .



45 x 43

Select a configuration for each cell, in order to minimize the height of the table (whose width is limited)

Precompute what can be precomputed

First model : 1 decision variable per possible configuration for each cell

Extended formulation :

- Note that from the width of a column you can infer the minimum height of each of its cells.
- 1 decision variable per possible width per column
- Consequence: by changing a single decision variable, LocalSolver will update the height and width of all cells in the column

Modeling Pattern #3

Precompute what can be precomputed

Similar to column generation models

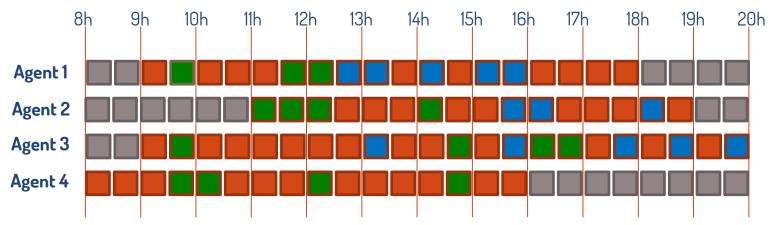
• Yields very dense search space

Modeling Pattern #4

Separate commands and effects

Separate commands and effects

Multi-skill workforce scheduling



Candidate model

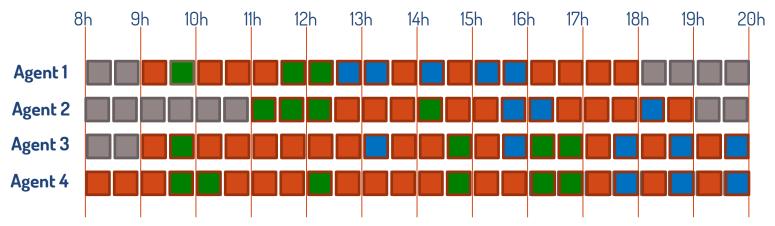
 $\begin{aligned} & \text{Skill}_{atk} = 1 \Leftrightarrow \text{agent } a \text{ works on skill } k \text{ at timestep } t \\ & \text{Constraint } SUM_k (\text{Skill}_{atk}) <= 1 \\ & \text{Constraint } OR_k (\text{Skill}_{atk}) == (t \in [\text{Start}_a, \text{End}_a[)) \end{aligned}$

Problem: any change of *Start_a* will be rejected unless skills are updated for all impacted timesteps

LocalSolver

Separate commands and effects

Multi-skill workforce scheduling



Alternative model

SkillReady_{atk}= 1 \Leftrightarrow agent *a* will works on skill *k* at timestep *t* **if present** *Constraint SUM_k* (SkillReady_{atk}) == 1 Skill_{atk} \leftarrow AND(SkillReady_{atk}, t \in [Start_a, End_a[)

Now we have no constraint between skills and worked hours -> for any change of *Start_a* skills are automatically updated

LocalSolver

Modeling Pattern #4

Separate commands and effects

Can avoid defining strong constraints between related variables -> minimize the hamming distance between feasible solutions

Similar case: Unit Commitment Problems

- A generator is active or not, but when active the production is in [P_{min}, P_{max}]
- Better modeled without any constraint

 $\begin{aligned} & \text{ProdReady}_{gt} \leftarrow \text{float}(\text{P}_{\min}, \text{P}_{\max}) \\ & \text{Active}_{gt} \leftarrow \text{bool}() \\ & \text{Prod}_{gt} \leftarrow \text{Active}_{gt} \times \text{ProdReady}_{gt} \end{aligned}$

Modeling Pattern #5

Use dominance properties

Use dominance properties

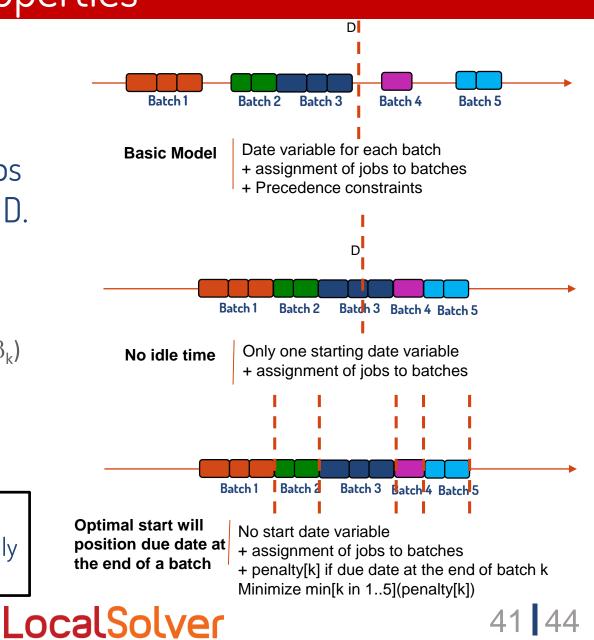
Batch scheduling for *N* jobs having the same due date D.

- Completion time of each job will be that of the batch selected for this job
- \succ Linear late or early cost ($\alpha_k \beta_k$)

We can **minimize a minimum**

adjusted after each move

As if starting date was automatically



Summary

- 1. Choose the right set of decision variables
- 2. Do not limit yourself to linear operators
- 3. Precompute what can be precomputed
- 4. Separate commands and effects
- 5. Use dominance properties

Modeling Pattern #6

Your turn!

Conclusion

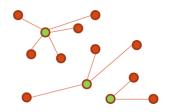
Hybrid math programming solver

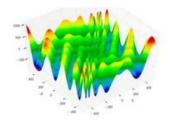
For combinatorial, numerical, or mixed-variable optimization

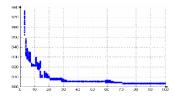
Particularly suited for large-scale non-convex optimization

High-quality solutions in seconds without tuning

LocalSolver 4.0 = LS + CP/SAT + LP/MIP + NLP







Free for academics, Business licenses from 990 €, COME AND MEET US ON EXHIBITION BOOTH 21

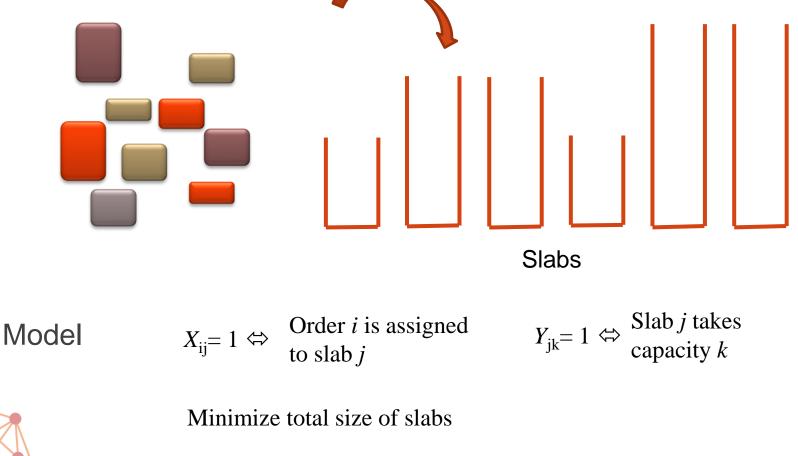
<u>Thierry Benoist</u> <u>Julien Darlay</u> Bertrand Estellon Frédéric Gardi Romain Megel

www.localsolver.com

Choose the right set of decision variables

Industrial « Bin-packing »

Assignment of steel orders to « slabs » whose capacity can take only 5 different values



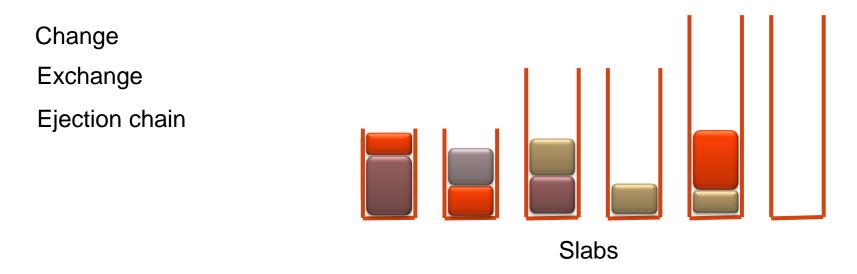
LocalSolver

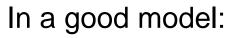
46

Choose the right set of decision variables

Industrial « Bin-packing »

Assignment of steel orders to « slabs » whose capacity can take only 5 different values





- when a value can be computed from others it is defined with operator
 (it is an intermediate variable)
- moving from a feasible solution to another feasible solution only requires modifying a small number of **decision** variables.

Choose the right set of decision variables

Industrial « Bin-packing »

Assignment of steel orders to « slabs » whose capacity can take only 5 different values

