
www.localsolver.com

Thierry Benoist Julien Darlay Bertrand Estellon
Frédéric Gardi Romain Megel

1/18

LocalSolver 4.0
Hybrid Math Programming

2 44

Who are we ?

Bouygues, one of the French largest
corporation, €33 bn in revenues

LocalSolver, mathematical optimization
solver commercialized by Innovation 24

3 44

Agenda

LocalSolver
• Quick introduction

• Examples

• Technology

• Benchmarks

• Roadmap

LocalSolver in practice

4 44

LocalSolver

Solver for combinatorial & continuous optimization
• Provides good-quality solutions in short running times

• Allows to tackle large-scale problems

• Simple mathematical modeling formalism

 C++, Java, .NET APIs

 Modeling Language (LSP)

Solver based on local search
• Moves based on decisions/constraints hypergraph

• Incremental evaluation: millions of moves per minute

• Adaptive, randomized, parallelized simulated annealing with restarts

Free academic licenses
Commercial licenses from 990 €

5 44

LocalSolver 4.0

Mathematical programming solver
• For combinatorial optimization

• For numerical optimization

• For mixed-variable optimization

• Provides solutions (upper bounds)

• Provides lower bounds

• Infeasibility gap/proof, optimality gap/proof

Suited for large-scale non-convex optimization
• Millions of combinatorial and/or continuous variables

• Non-convex constraints and/or objectives

• Short resolution times

6 44

Examples

7 44

Numerical optimization

Smallest Circle
• Find the circle of minimum radius including a set of points

• Two continuous decisions: x and y

• The radius r: expression deduced from decisions

• Straightforward quadratic model

x <- float(minX, maxX);
y <- float(minY, maxY);

r2 <- max[i in 1..n] (pow(x-coordX[i],2) + pow(y-coordY[i],2));

minimize sqrt(r2);

Continuous decision

Quadratic expression

8 44

Constrained combinatorial optimization

P-Median
• Find a subset of P elements in a set of N

• Minimize the sum of distances from each element to the closest one in P

function model() {
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize sum[i in 1..N] (minDistance[i]);

}

9 44

Local Search

10 44

Local Search

Main idea for combinatorial optimization
• Sequential modification of a small number of decisions

• Maintaining the feasibility of current solution

• Incremental evaluation, generally in O(1) time

→ Small improvement probability but small time and space complexity

A three layers architecture
• Moves based on mathematical model

• Incremental evaluation of solutions

• Heuristic to drive the search


6

3

3

2

11 44

Standard moves in combinatorial optimization: “k-flips”
• Could lead to infeasible solution on real instances

• If feasibility is hard to reach: slow convergence

LocalSolver maintains feasibility
• « Destroy & repair »

• Ejection chain on constraint graph

• Use of known combinatorial structure

Moves

...
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;
...

12 44

Incremental evaluation
• “Lazy” propagation in the expression DAG

• Usage of invariants

→ Millions of moves per minute

Fast exploration

t t

t t

ttt

t t t

t t

13 44

Heuristic

Online learning of moves
• Discard inefficient moves

• Improve efficient moves selection

Simulated annealing
• Handle non smooth objectives

• Allow degrading solutions

« Restart » + parallel search
• Avoid local optima

• Improve search space coverage t t

ttt

t t t

t t

t t

14 44

Benchmarks

15 44

Combinatorial optimization
Car Sequencing : schedule cars among an assembly line

10 sec 100 200 300 400 500

Gurobi 5.5 140 274 X 429 513

LocalSolver 4.0 8 5 8 10 19

60 sec 100 200 300 400 500

Gurobi 5.5 3 66 1 356 513

LocalSolver 4.0 6 4 3 5 6

600 sec 100 200 300 400 500

Gurobi 5.5 3 2 *0 1 20

LocalSolver 4.0 4 *0 *0 2 *0

16 44

Non constrained non convex optimization

Quasi optimal solutions in a few seconds on several artificial
landscapes from the literature
Oldenhuis (2009). Test functions for global optimization algorithms. Matlab

gap (%) < 10-6

gap (%) < 10-4

gap (%) < 10-4

gap (%) < 10-6
 10-1n = 10  10000

17 44

Combinatorial / Continuous optimization

K-means
• Machine learning problem

• NP-Hard, Quadratic

• Same solutions in comb. or cont.

Instance k OPT* LS 4.0 GAP

ruspini 2 89337 89337,9 0,00%

3 51063,4 51063,5 0,00%

4 12881 12881,1 0,00%

5 10126,7 10126,8 0,00%

6 8575,41 8670,86 1,11%

7 7126,2 7159,13 0,46%

8 6149,64 6158,26 0,14%

9 5181,64 5277,11 1,84%

10 4446,28 4856,98 9,24%

iris 2 152,348 152,369 0,01%

3 78,8514 78,9412 0,11%

4 57,2285 57,3556 0,22%

5 46,4462 46,5363 0,19%

6 39,04 41,7964 7,06%

7 34,2982 34,6489 1,02%

8 29,9889 30,3029 1,05%

9 27,7861 28,0667 1,01%

10 25,834 26,0521 0,84%

glass 20 114,646 120,048 4,71%

30 63,2478 74,1251 17,20%

40 39,4983 58,3912 47,83%

50 26,7675 52,4679 96,01%

*[Aloise et al. 2012]

18 44

Toward an “all-in-one” solver

One solver to tackle all kinds of problems
• Discrete, numerical, or mixed-variable optimization

• From small-scale to large-scale problems

• Best effort to prove infeasibility or optimality

• Able to scale heuristically faced with large problems

One solver offering the best of all optimization techniques
• Local and direct search

• Constraint propagation and inference

• Linear and mixed-integer programming

• Nonlinear programming (convex and non-convex)

• Dynamic programming

• Specific algorithms: paths, trees, flows, matchings, etc.

19 44

LocalSolver in practice
How to migrate to LocalSolver

20 44

Modeling patterns ?

A classic topic in MIP or CP

Very little literature on modeling for Local Search…

…because of the absence of model-and-run solver

models and algorithms were designed together and not
always clearly separated

21 44

Modeling Pattern #1
Choose the right set of decision variables

22 44

Choose the right set of decision variables

function model() {
X[1..N] <- bool(); // x[i] = 1 if hospital in city i
Y[1..N][1..N] <- bool(); // y[i][j] = 1 if city i is assigned to hospital j

for[i in 1..N]
constraint sum[j in 1..N] Y[i][j] == 1;

for[i in 1..N][j in 1..N]
constraint Y[i][j] <= X[j];

constraint sum[i in 1..N] (X[i]) == P;

minimize sum[i in 1..N][j in 1..N] (distance[i][j]*Y[i][j]);
}

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city in S

Given the values of variables Y, I can infer the values of X
Given the values of variables X, I can infer the values of Y

Too many decision variables!

23 44

First attempt: keep only decision variables Y

function model() {
X[1..N] <- bool(); // x[i] = 1 if hospital in city i
Y[1..N][1..N] <- bool(); // y[i][j] = 1 if city i is assigned to hospital j

for[i in 1..N]
constraint sum[j in 1..N] Y[i][j] == 1;

for[j in 1..N]
X[j] <- or[j in 1..N] (Y[i][j]);

constraint sum[i in 1..N] (X[i]) == P;

minimize sum[i in 1..N][j in 1..N] (distance[i][j]*Y[i][j]);
}

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city in S

We can introduce non-decision expressions

We can use non-linear operators

How many variables need to be changed to move from a
feasible solution to another feasible solution ?

24 44

First attempt: keep only decision variables Y

function model() {
X[1..N] <- bool(); // x[i] = 1 if hospital in city i
Y[1..N][1..N] <- bool(); // y[i][j] = 1 if city i is assigned to hospital j

for[i in 1..N]
constraint sum[j in 1..N] Y[i][j] == 1;

for[j in 1..N]
X[j] <- or[j in 1..N] (Y[i][j] <= X[j];

constraint sum[i in 1..N] (X[i]) == P;

minimize sum[i in 1..N][j in 1..N] (distance[i][j]*Y[i][j]);
}

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city in S

We can introduce non-decision expressions

We can use non-linear operators

How many variables need to be changed to move from a
feasible solution to another feasible solution ?

25 44

First attempt: keep only decision variables Y

function model() {
X[1..N] <- bool(); // x[i] = 1 if hospital in city i
Y[1..N][1..N] <- bool(); // y[i][j] = 1 if city i is assigned to hospital j

for[i in 1..N]
constraint sum[j in 1..N] Y[i][j] == 1;

for[j in 1..N]
X[j] <- or[j in 1..N] (Y[i][j] <= X[j];

constraint sum[i in 1..N] (X[i]) == P;

minimize sum[i in 1..N][j in 1..N] (distance[i][j]*Y[i][j]);
}

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city in S

We can introduce non-decision expressions

We can use non-linear operators

How many variables need to be changed to move from a
feasible solution to another feasible solution ?

26 44

Second attempt: keep only decision variables X

function model() {
x[1..N] <- bool();
constraint sum[i in 1..N] (x[i]) == P;

minDistance[i in 1..N] <- min[j in 1..N] (x[j] ? distance[i][j] : +inf);
minimize sum[i in 1..N] (minDistance[i]);

}

• Now the hamming distance between two feasible solutions is 2
• We have only N decision variables

Select a set S of P cities among N
Minimizing the sum of distances
from each city to the closest city in S

Even conditional expressions are allowed !

27 44

Modeling Pattern #1
Choose the right set of decision variables

A good model defines a good search space
• Intermediate variables are inferred from decisions

• Logical and non-linear expressions available

• No artificial variables needed

0

1

2

0

1

2

28 44

Modeling Pattern #2
Do not limit yourself to linear operators

29 44

Do not limit yourself to linear operators

TRAVELING SALESMAN PROBLEM

MIP approach: Xij=1 if city j is after city i in the tour
• Matching constraints 𝑗 𝑋𝑖𝑗 = 1 and 𝑖 𝑋𝑖𝑗 = 1

• Plus an exponential number of subtour elimination constraints

• Minimize 𝑖𝑗 𝑐𝑖𝑗𝑋𝑖𝑗

TSP Lib: average gap
after 10mn = 2.6%“at” operator

Polynomial non-linear model: : Xik=1 if city i is in position k in the
tour

• Matching constraints 𝑘 𝑋𝑖𝑘 = 1 and 𝑖 𝑋𝑖𝑘 = 1

• 𝑌𝑘 ← 𝑖 𝑖𝑋𝑖𝑘 the index of the kth city of the tour

• Minimize 𝑘 𝑐[𝑌𝑘,𝑌𝑘+1]

30 44

Why solving a TSP with LocalSolver ?
Time 𝐴, 𝐵, 𝑇 =

2 𝛼𝑥
2+𝛼𝑦

2

−2 𝛼𝑥𝛽𝑥+𝛼𝑦𝛽𝑦 + 4 𝛼𝑥𝛽𝑥+𝛼𝑦𝛽𝑦
2
−4 𝛼𝑥2+𝛼𝑦2 𝛽𝑥

2+𝛽𝑦
2−𝑉²

+ 𝑇

With 𝛼𝑥 , 𝛽𝑥 , 𝛼𝑦 , 𝛽𝑦 function of A,B and T

Kinetic TSP

31 44

Modeling Pattern #2
Do not limit yourself to linear operators

Even arrays are allowed (indexing operator)
• Yield very compact models

• Can model any relation between two variables

32 44

Modeling Pattern #3
Precompute what can be precomputed

33 44

Precompute what can be precomputed
Document processing : in a table, a text cell has several possible height x width
configurations .

Select a configuration for each cell, in order to minimize the height of the table (whose
width is limited)

29 x 82

34 x 61

45 x 43

LocalSolver : mathematical
programming by local search

LocalSolver : mathematical
programming
by local search

LocalSolver :
mathematical
programming
by local search

34 44

Precompute what can be precomputed
First model : 1 decision variable per possible configuration for each cell

Extended formulation :
• Note that from the width of a column you can infer the minimum height of each of its

cells.

• 1 decision variable per possible width per column

• Consequence: by changing a single decision variable, LocalSolver will update the
height and width of all cells in the column

35 44

Modeling Pattern #3
Precompute what can be precomputed

Similar to column generation models
• Yields very dense search space

36 44

Modeling Pattern #4
Separate commands and effects

37 44

Separate commands and effects

Multi-skill workforce scheduling

Candidate model
Skillatk= 1 agent a works on skill k at timestep t

Constraint SUMk (Skillatk) <= 1

Constraint ORk (Skillatk) == (t [Starta, Enda[)

Problem: any change of Starta will be rejected unless skills
are updated for all impacted timesteps

Agent 1

Agent 2

Agent 3

Agent 4

8h 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 20h

38 44

Separate commands and effects

Multi-skill workforce scheduling

Agent 1

Agent 2

Agent 3

Agent 4

Alternative model
SkillReadyatk= 1 agent a will works on skill k at timestep t if present

Constraint SUMk (SkillReadyatk) == 1

SkillatkAND(SkillReadyatk , t [Starta, Enda[)

Now we have no constraint between skills and worked hours
-> for any change of Starta skills are automatically updated

8h 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 20h

39 44

Modeling Pattern #4
Separate commands and effects

Can avoid defining strong constraints between related variables

-> minimize the hamming distance between feasible solutions

Similar case: Unit Commitment Problems
• A generator is active or not, but when active the production is in [Pmin, Pmax]

• Better modeled without any constraint

ProdReadygt float(Pmin,Pmax)

Activegt bool()

ProdgtActivegt  ProdReadygt

40 44

Modeling Pattern #5
Use dominance properties

41 44

Use dominance properties

Batch scheduling for N jobs
having the same due date D.
 Completion time of each job

will be that of the batch
selected for this job

 Linear late or early cost (k k)

Date variable for each batch

+ assignment of jobs to batches

+ Precedence constraints

Basic Model

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

D

Only one starting date variable

+ assignment of jobs to batches
No idle time

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

D

We can minimize a minimum

As if starting date was automatically
adjusted after each move

No start date variable

+ assignment of jobs to batches

+ penalty[k] if due date at the end of batch k

Minimize min[k in 1..5](penalty[k])

Optimal start will

position due date at

the end of a batch

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

42 44

Summary

1. Choose the right set of decision variables

2. Do not limit yourself to linear operators

3. Precompute what can be precomputed

4. Separate commands and effects

5. Use dominance properties

43 44

Modeling Pattern #6
Your turn!

44 44

Conclusion

Hybrid math programming solver

For combinatorial, numerical,
or mixed-variable optimization

Particularly suited for large-scale
non-convex optimization

High-quality solutions in seconds
without tuning

LocalSolver 4.0
=

LS + CP/SAT + LP/MIP + NLP

Free for academics, Business licenses from 990 €,

COME AND MEET US ON EXHIBITION BOOTH 21

www.localsolver.com

Thierry Benoist Julien Darlay Bertrand Estellon
Frédéric Gardi Romain Megel

1/18

46 44

Industrial « Bin-packing »
Assignment of steel orders to « slabs » whose capacity can take only 5

different values

Choose the right set of decision variables

Xij= 1 
Order i is assigned

to slab j
Model

Slabs

Yjk= 1 
Slab j takes

capacity k

Minimize total size of slabs

47 44

Choose the right set of decision variables

Change

Ejection chain

Exchange

Slabs

Industrial « Bin-packing »
Assignment of steel orders to « slabs » whose capacity can take only 5

different values

Xij= 1 
Order i is assigned

to slab j
Model Yjk= 1 

Slab j takes

capacity k

In a good model:
• when a value can be computed from others it is defined with operator

<- (it is an intermediate variable)

• moving from a feasible solution to another feasible solution only

requires modifying a small number of decision variables.

48 44

Choose the right set of decision variables

Change

Ejection chain

Exchange

Slabs

Industrial « Bin-packing »
Assignment of steel orders to « slabs » whose capacity can take only 5

different values

Xij= 1 
Order i is assigned

to slab j
Model Capak MinCapa[contentk]

“at” operator

