
P. 19 • IFORS NEWS September 2013

Introduction
Mixed Integer Linear Programming (MIP) is undoubtedly one of the most
powerful tools of Operations Research (OR). Its ease of use appeals to OR
professionals: the user models the problem as an integer linear program
and the MIP engine solves it by branch & bound & cut. This ``model &
run’’ approach, when effective, reduces considerably development and
maintenance of optimization software, and other tree search-based
technologies like Constraint Programming (CP) are following the way.

Faced with situations such as large-scale nonlinear optimization
problems, OR practitioners often find MIP or CP solvers ineffective.
They address this problem by implementing local search heuristics. In
contrast with tree search techniques, Local Search (LS) involves applying
iterative changes (called moves) to improve the objective function. This
technique allows operations researchers to obtain good-quality solutions
in a reasonable time (in the order of minutes). However, designing and
implementing local search algorithms is not straightforward, even with
frameworks that have been designed to help the programmer.

The algorithmic layer dedicated to the evaluation of moves is particularly
difficult to engineer, because it requires an expertise both in algorithms
and computer programming. (see [1] for a survey on the LS paradigm
and its applications.)

This observation motivated the development of LocalSolver , a
mathematical programming solver based on local search. Started in
2007, the project aims to combine the simplicity of use of a model-and-
run solver and the power of local search techniques for combinatorial
optimization. It thus enables OR practitioners to focus on the modeling
of the problem using a simple formalism, and leave its actual resolution
to a solver based on efficient and reliable local search techniques.

Modeling
LocalSolver includes an innovative math modeling and scripting
language for fast prototyping called LSP (Local Search Programming)
language. This language is used in our examples although lightweight
object-oriented APIs are also available for full integration (C++, Java,
.NET). LocalSolver’s modeling language is close to that of classical
mathematical programming but its use of a larger set of common
mathematical operators makes it more intuitive and easy to learn for
OR practitioners. For example the following lines define the model of a
knapsack problem with n objects of given weights and values.

In this basic example, binary decision variables x[i] are introduced with
the bool() statement. Then, the weight in the knapsack is introduced as
a sum expression and a constraint is set on its value. Finally, the value in
the knapsack is defined and set as a maximization objective. Note that

several objective functions could be added, which would be interpreted
as a lexicographic objective function. The crucial point here is that
nothing more needs to be defined and in particular no neighborhoods
are specified. Only this model is given to the solver. The solver is left to
apply a local search algorithm made of ``general-purpose’’ moves to
work on the abstract combinatorial structure induced by the user model,
first for finding a feasible solution and then for iteratively improving this
solution. The key principles of these moves will be given in the next
section.

Although this simple knapsack example uses only linear expressions,
the underlying solving techniques allow the use of highly nonlinear
operators including conditional expressions (if A then B else C written as
A ? B : C) or even array lookups (the expression A[N] coding for the Nth
element in array A). Table 1 gives the list of available operators.

Introducing logical, arithmetic, or relational operators has two
important benefits of being intuitive and efficient in a local search
context. With such low-level operators, modeling is easier than
with basic MIP syntax, even for beginners (in particular, for those
who are not comfortable with computer programming). Besides,
the invariants induced by these operators can be exploited by the
internal algorithms of the LS solver to speed up local search.

For example, we can consider the P-median problem [2], of selecting a
subset S of P cities among N, for instance for locating public facilities, so
as to minimize the sum of distances from each city to the closest city in
S. In the model below the use of conditional and min operators allows
formulating the model almost as expressed in the above sentence. This
simplicity also yields a model focused only on the relevant decision
variables, namely the selection or not of each city: x[i]. After constraining
the sum of these variables to equal P, the minDistance[i] from each
city i to the closest city in S is written as the minimum of distances to
other cities, the distance to cities outside of S being counted as infinite
(InfiniteDistance can be set to the maximum value in the distance
matrix). The objective function is the sum of these minDistance[i].

Arithmetic Logical Relational

sum, min, max not ==

prod, div, mod and !=

log, exp, pow or <=

sin, cos, tan xor >=

floor, ceil, round if <

abs, dist, sqrt at >

Table 1. Mathematical operators available in LocalSolver.

TUTORIAL
Thierry Benoist <tbenoist@localsolver.com>
Julien Darlay <jdarlay@localsolver.com>
Bertrand Estellon
Frédéric Gardi <fgardi@localsolver.com>
Romain Megel <rmegel@localsolver.com>

P. 20 • IFORS NEWS • September 2013

Here again this definition of the problem is all that the solver
needs to find high-quality solutions in seconds (an average gap
of 0.6 % on the 40 instances of the OR-Library with a time limit
set to 1 minute). In the next section, we will describe the internal
mechanisms making this possible.

Solving
Our approach to autonomous
Local Search was guided by
the following fundamental
principle: the LS solver must
work in the same way that
an LS practitioner works.
This implies that LocalSolver
performs structured moves to maintain the feasibility of solutions
at each iteration, whose evaluation is accelerated by exploiting
invariants induced by the structure of the model. Components
that make the algorithm efficient are:

• An incremental machinery that quickly evaluates the impact
of a transformation of the solution;
• Multiple autonomous moves exploiting the combinatorial
structure of the model to explore feasible neighborhoods of
a solution;
• A global adaptive search strategy guiding the search towards
high-quality solutions.

The incremental machinery is based on a representation of the
model as a directed acyclic graph (DAG), the roots of which are
the decisions and the leaves, the constraints and objectives. The
inner nodes of this DAG are the operators listed in Table 1. With
this representation, a solution is a complete instantiation of the
root variables. Applying moves to the current solution consists
of modifying the current values of the decisions (roots) and
evaluating constraints and objectives (leaves) by propagating
these modifications along the DAG. Designing a highly optimized
propagation algorithm allows evaluating millions of moves per
minute on real-life models.

The most simple generic move is the change of the value of a
decision, for example, changing the value of a x[i] decision in
our P-median example. However, if we want to move from one
feasible solution to another, as in most hand-made local search
algorithms, more structured moves are required. The solver
builds such moves by analyzing the structure of the model. For
instance, the cardinality constraint in the P-median problem will
be exploited to design moves preserving the number of selected
cities and consequently the feasibility of the solution. More
generally, following ejection chains or ejections cycles in the
constraint hypergraph (Figure 1) yields very powerful moves. In
addition to these small neighborhoods, larger neighborhoods
can be explored by combining smaller neighborhoods within a

destroy & repair mechanism. Finally, the identification of special
combinatorial structures can trigger the activation of specific
neighborhoods. Note that the neighborhoods can be explored
almost randomly or by targeting moves with higher probability
of success.

The exploration of the search space is distributed on several
threads with periodic synchronization. The global diversification
of the search is ensured through simulated annealing with
reheating and restart mechanisms. Statistics on the performance
of the moves are dynamically exploited to improve the overall
performance along the search.

Benchmarks and conclusions
Despite their apparent conceptual simplicity, the principles given
in the previous section yield remarkably good results in practice,
in particular for large-scale combinatorial optimization problems,
which are out-of-scope of state-of-the-art mathematical
programming solvers. Even on some of the hardest MIPLIB
instances, LocalSolver recently outperformed the best MIP solvers.
Another typical example is the car sequencing problem , which
consists of scheduling cars along painting and assembly lines
subject to sequencing constraints. The solutions obtained by
LocalSolver in 10 seconds are far better that the ones obtained by
the best MIP solvers after running for 1 day. This ability to tackle
large-scale combinatorial problems in a model-and-run fashion
was vividly illustrated during the EURO/ROADEF Challenge 2012,
which involved the reassignment of processes on Google servers
subject to various resources and dependency constraints. Ranked
24th over 82 participating teams, LocalSolver was the sole model-
and-run, general-purpose mathematical programming solver to
qualify for the final round using a 100-line model, written in one
day. More computational results on both academic and industrial
problems can be found in [3] or on our website .

In 2012, LocalSolver
was mature enough to
move from a research
project to a commercial
product that is now used
in various industries
around the world, from
the maximization of TV
advertising revenue in
France to the optimization
of bakery supply chain in
Japan (a nonlinear problem
involving 3 million 0-1
decisions!).

For the end of 2013, the first step toward an all-in-one
mathematical programming solver for large-scale mixed-variable
non-convex optimization is planned. This new version will offer
several new important features from both functional and technical
points of view: small-neighborhood moves to optimize over
continuous or mixed decisions; exploration of large, exponential-
size neighborhoods over 0-1 or mixed decisions using some
tree search techniques (for example, rounding heuristics based
on linear relaxation); exploration of large neighborhoods over
continuous decisions by revisiting successive linear programming
techniques for nonlinear programming (based on a simplex
algorithm); computation of lower bounds combining constraint
propagation and dual linear relaxation.

Bibliography
[1] Aarts E, Lenstra J (1997) Local search in combinatorial optimization.
John Wiley & Sons
[2] Beasley J (1985) A note on solving large p-median problems. Eur J Oper
Res 21(2):270–273
[3] Benoist T, Estellon B, Gardi F, Megel R, Nouioua K (2011) Localsolver 1.x:
a black-box local-search solver for 0-1 programming. 4OR-Q J Oper Res
9(3):299–316

Figure 1. An ejection cycle involving six boolean variables x1, x3, x5 (whose current
value is 1) and x2,x4, x6 (whose current value is 0), and six constrained sums C1, …,
C6. Each variable belongs to two sums (for example, x1 belongs to C1 and C6). Now,
x1, x3, x5 are decreased while x2, x4, x6 are increased. This move preserves the values
of the sums, and thus the feasibility of the constraints.

