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Introduction
Mixed Integer Linear Programming (MIP) is undoubtedly one of the most 
powerful tools of Operations Research (OR). Its ease of use appeals to OR 
professionals: the user models the problem as an integer linear program 
and the MIP engine solves it by branch & bound & cut. This ``model & 
run’’ approach, when effective, reduces considerably development and 
maintenance of optimization software, and other tree search-based 
technologies like Constraint Programming (CP) are following the way.

Faced with situations such as large-scale nonlinear optimization 
problems, OR practitioners often find MIP or CP solvers ineffective. 
They address this problem by implementing local search heuristics. In 
contrast with tree search techniques, Local Search (LS) involves applying 
iterative changes (called moves) to improve the objective function. This 
technique allows operations researchers to obtain good-quality solutions 
in a reasonable time (in the order of minutes). However, designing and 
implementing local search algorithms is not straightforward, even with 
frameworks that have been designed to help the programmer. 

The algorithmic layer dedicated to the evaluation of moves is particularly 
difficult to engineer, because it requires an expertise both in algorithms 
and computer programming. (see [1] for a survey on the LS paradigm 
and its applications.)

This observation motivated the development of LocalSolver , a 
mathematical programming solver based on local search. Started in 
2007, the project aims to combine the simplicity of use of a model-and-
run solver and the power of local search techniques for combinatorial 
optimization. It thus enables OR practitioners to focus on the modeling 
of the problem using a simple formalism, and leave its actual resolution 
to a solver based on efficient and reliable local search techniques.

Modeling
LocalSolver includes an innovative math modeling and scripting 
language for fast prototyping called LSP (Local Search Programming) 
language. This language is used in our examples although lightweight 
object-oriented APIs are also available for full integration (C++, Java, 
.NET). LocalSolver’s modeling language is close to that of classical 
mathematical programming but its use of a larger set of common 
mathematical operators makes it more intuitive and easy to learn for 
OR practitioners. For example the following lines define the model of a 
knapsack problem with n objects of given weights and values.

In this basic example, binary decision variables x[ i ] are introduced with 
the bool( ) statement. Then, the weight in the knapsack is introduced as 
a sum expression and a constraint is set on its value. Finally, the value in 
the knapsack is defined and set as a maximization objective. Note that 

several objective functions could be added, which would be interpreted 
as a lexicographic objective function. The crucial point here is that 
nothing more needs to be defined and in particular no neighborhoods 
are specified. Only this model is given to the solver. The solver is left to 
apply a local search algorithm made of ``general-purpose’’ moves to 
work on the abstract combinatorial structure induced by the user model, 
first for finding a feasible solution and then for iteratively improving this 
solution. The key principles of these moves will be given in the next 
section.

Although this simple knapsack example uses only linear expressions, 
the underlying solving techniques allow the use of highly nonlinear 
operators including conditional expressions (if A then B else C written as  
A ? B : C) or even array lookups (the expression A[ N ] coding for  the Nth 
element in array A). Table 1 gives the list of available operators.

Introducing logical, arithmetic, or relational operators has two 
important benefits of being intuitive and efficient in a local search 
context. With such low-level operators, modeling is easier than 
with basic MIP syntax, even for beginners (in particular, for those 
who are not comfortable with computer programming). Besides, 
the invariants induced by these operators can be exploited by the 
internal algorithms of the LS solver to speed up local search.

For example, we can consider the P-median problem [ 2 ], of selecting a 
subset S of P cities among N, for instance for locating public facilities, so 
as to minimize the sum of distances from each city to the closest city in 
S. In the model below the use of conditional and min operators allows 
formulating the model almost as expressed in the above sentence. This 
simplicity also yields a model focused only on the relevant decision 
variables, namely the selection or not of each city:   x[ i ]. After constraining 
the sum of these variables to equal P, the  minDistance[ i ] from each 
city i to the closest city in S is written as the minimum of distances to 
other cities, the distance to cities outside of S being counted as infinite 
(InfiniteDistance can be set to the maximum value in the  distance 
matrix). The objective function is the sum of these minDistance[ i ].

    

   

   

 

Arithmetic Logical Relational

sum, min, max not ==

prod, div, mod and !=

log, exp, pow or <=

sin, cos, tan xor >=

floor, ceil, round if <

abs, dist, sqrt at >

Table 1. Mathematical operators available in LocalSolver.
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Here again this definition of the problem is all that the solver 
needs to find high-quality solutions in seconds (an average gap 
of 0.6 % on the 40 instances of the OR-Library with a time limit 
set to 1 minute). In the next section, we will describe the internal 
mechanisms making this possible.

Solving
Our approach to autonomous 
Local Search was guided by 
the following fundamental 
principle: the LS solver must 
work in the same way that 
an LS practitioner works. 
This implies that LocalSolver 
performs structured moves to maintain the feasibility of solutions 
at each iteration, whose evaluation is accelerated by exploiting 
invariants induced by the structure of the model. Components 
that make the algorithm efficient are:

• An incremental machinery that quickly evaluates the impact 
of a transformation of the solution;
•  Multiple autonomous moves exploiting the combinatorial 
structure of the model to explore  feasible neighborhoods of 
a solution;
• A global adaptive search strategy guiding the search towards 
high-quality solutions.

The incremental machinery is based on a representation of the 
model as a directed acyclic graph (DAG), the roots of which are 
the decisions and the leaves, the constraints and objectives. The 
inner nodes of this DAG are the operators listed in Table 1. With 
this representation, a solution is a complete instantiation of the 
root variables. Applying moves to the current solution consists 
of modifying the current values of the decisions (roots) and 
evaluating constraints and objectives (leaves) by propagating 
these modifications along the DAG. Designing a highly optimized 
propagation algorithm allows evaluating millions of moves per 
minute on real-life models.

The most simple generic move is the change of the value of a 
decision, for example, changing the value of a   x[i] decision in 
our P-median example. However, if we want to move from one 
feasible solution to another, as in most hand-made local search 
algorithms, more structured moves are required. The solver 
builds such moves by analyzing the structure of the model. For 
instance, the cardinality constraint in the P-median problem will 
be exploited to design moves preserving the number of selected 
cities and consequently the feasibility of the solution. More 
generally, following ejection chains or ejections cycles in the 
constraint hypergraph (Figure 1) yields very powerful moves. In 
addition to these small neighborhoods, larger neighborhoods 
can be explored by combining smaller neighborhoods within a 

destroy & repair mechanism. Finally, the identification of special 
combinatorial structures can trigger the activation of specific 
neighborhoods. Note that the neighborhoods can be explored 
almost randomly or by targeting moves with higher probability 
of success.

The exploration of the search space is distributed on several 
threads with periodic synchronization. The global diversification 
of the search is ensured through simulated annealing with 
reheating and restart mechanisms. Statistics on the performance 
of the moves are dynamically exploited to improve the overall 
performance along the search.

Benchmarks and conclusions
Despite their apparent conceptual simplicity, the principles given 
in the previous section yield remarkably good results in practice, 
in particular for large-scale combinatorial optimization problems, 
which are out-of-scope of state-of-the-art mathematical 
programming solvers. Even on some of the hardest MIPLIB  
instances, LocalSolver recently outperformed the best MIP solvers. 
Another typical example is the car sequencing problem , which 
consists of scheduling cars along painting and assembly lines 
subject to sequencing constraints. The solutions obtained by 
LocalSolver in 10 seconds are far better that the ones obtained by 
the best MIP solvers after running for 1 day. This ability to tackle 
large-scale combinatorial problems in a model-and-run fashion 
was vividly illustrated during the EURO/ROADEF Challenge 2012, 
which involved the reassignment of processes on Google servers 
subject to various resources and dependency constraints. Ranked 
24th over 82 participating teams, LocalSolver was the sole model-
and-run, general-purpose mathematical programming solver to 
qualify for the final round using a 100-line model, written in one 
day. More computational results on both academic and industrial 
problems can be found in [3] or on our website .

In 2012, LocalSolver 
was mature enough to 
move from a research 
project to a commercial 
product that is now used 
in various industries 
around the world, from 
the maximization of TV 
advertising revenue in 
France to the optimization 
of bakery supply chain in 
Japan (a nonlinear problem 
involving 3 million 0-1 
decisions!). 

For the end of 2013, the first step toward an all-in-one 
mathematical programming solver for large-scale mixed-variable 
non-convex optimization is planned. This new version will offer 
several new important features from both functional and technical 
points of view: small-neighborhood moves to optimize over 
continuous or mixed decisions; exploration of large, exponential-
size neighborhoods over 0-1 or mixed decisions using some 
tree search techniques (for example, rounding heuristics based 
on linear relaxation); exploration of large neighborhoods over 
continuous decisions by revisiting successive linear programming 
techniques for nonlinear programming (based on a simplex 
algorithm); computation of lower bounds combining constraint 
propagation and dual linear relaxation.
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Figure 1. An ejection cycle involving six boolean variables x1, x3, x5 (whose current 
value is 1) and  x2,x4, x6 (whose current value is 0), and six constrained sums C1, …, 
C6. Each variable belongs to two sums (for example, x1 belongs to C1 and C6). Now, 
x1, x3, x5 are decreased while x2, x4, x6 are increased. This move preserves the values 
of the sums, and thus the feasibility of the constraints.


