

Designing and optimizing an LNG supply chain using LocalSolver

Thierry Benoist, <u>Frédéric Gardi</u>, Romain Megel, Clément Pajean Innovation 24 & LocalSolver, Paris

Michel Ben Belgacem, Delphine Leblanc, Frédéric Legrand, Sławomir Pietrasz ENGIE Lab CRIGEN, Saint-Denis

VEROLOG 2016, Nantes

Bouygues, one of the French largest corporation, €33 bn in revenues http://www.bouygues.com

Innovation24

Operations Research subsidiary of Bouygues 20 years of practice and research http://www.innovation24.fr

LocalSolver

Mathematical optimization solver developed by Innovation 24 http://www.localsolver.com

Clients

Multinational electric and gas utility company, €70 bn in revenues http://www.engie.com

ENGIE is a major gas agent in Europe

- No. 2 buyer
- No. 1 transport and distribution network manager
- No. 1 storage operator
- No. 1 in Liquefied Natural Gas (LNG)

CRIGEN = ENGIE French historical R&D center on gas, new energy sources, and emerging technologies, with 350 people

LNG value chain

Dimensioning storage & transportation assets

→ Periodic, stationary, long-term replenishment planning of client storages by trailers (vessels or trucks)

Nonlinear costs

Vessel OPEX function in blue | Vessel CAPEX function in black

client storage

140,000 m3

1 big vessel supplying 140,000 m3 every 2 weeks

Core optimization model

Decisions

- Which periodic routes to supply clients over the long run?
- What size for site storages? What size for trailers? How many ones?

Constraints

- Site storage and trailer sizes between min/max capacities
- Storage level dynamics: no runout, no overflow
- Trailer/site compatibilities

+ a number of real-life, business ingredients Ex: all trailers delivering hubs must have the same size

Objective: minimize the Total Cost of Ownership (= CAPEX + OPEX) of site storages and trailers over the operating horizon, generally **20 years**

Resolution

Scale of the instances

- 5 sources
- 20 hubs
- 100 clients
- 10 type of trailers

Technical conditions of use

- Default running time: 90 seconds
- Modern but standard server: 8-core Intel Xeon, 2.70 GHz, 8 GB RAM

→ Direct resolution through A LocalSolver

All-terrain optimization solver

For combinatorial, numerical, or mixed-variable optimization

Suited for tackling large-scale problems

Quality solutions in minutes without tuning The « Swiss Army Knife » of mathematical optimization

free trial with support – free for academics – rental licenses from 590 €/month – perpetual licenses from 9,900 € www.localsolver.com

Decisional	Arithmetical		Logical	Relational	Set-related	
bool	sum	sub	prod	not	eq	count
float	min	max	abs	and	neq	at
int	div	mod	sqrt	or	geq	indexof
list	log	exp	pow	xor	leq	partition
	COS	sin	tan	iif	gt	disjoint
	floor	ceil	round	array + at	lt	
	dist	scalar		piecewise		

+ operator call : to call an external native function which can be used to implement your own (black-box) operator

OptiRetail software

OptiRetail software

Route #2 🙁

Routes are feasible and fulfill all the constraints.									
1 trailers Capex Daily opex			18,724 m³/trailer						
			\$65,113,184						
			\$11,000						
lum	ber of	trailers use	d on this rou	te					
1	2	3 4	5 6	78	9 10				
			Delivery	Loa	Loading				
	0	source1	-	12,	732 m³				
	÷	site16	1,251 m	۱ ³ -					
	÷	site3	4,982 m	1 ⁸ -					
site10		site10	626 m³	-	-				
	÷	site8	1,251 m	۱ ³ -					
	÷.	site14	1,993 m	1 ⁸ -					
	X	source1							
		sourcer	-	-					
	0	source1	-	13,:	262 m³				
	÷	site9	1,251 m	1 ⁸ -					
	÷	site6	4,982 m	1 ³ -					
	÷	site17	626 m³	-					
	÷.	site7	2,479 m	1 ³ -					
	÷.	site2	1,251 m	1 ³ -					
	X	source1							
	$\mathbf{\mathbf{\nabla}}$	Sourcel	-	-					

18 19

Add tour

LocalSolver 6.5

Major features

- Integration of the power of LP/MIP techniques into LocalSolver
- Performance improvement of set-based modeling features
- \rightarrow Release planned for July 2016

www.localsolver.com