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Abstract. This paper introduces Local Search Programming (LSP), as
a paradigm allowing the practitioner to focus on the modeling of the
problem using a simple formalism, and then to let its actual resolution
to a solver based on efficient and reliable local-search algorithms. In other
words, our goal is to offer a model & run approach to combinatorial opti-
mization problems which are out of reach of existing Integer/Constraint
Programming autonomous solvers. In this paper, LocalSolver 1.0 is pre-
sented, first software realization of our works on this subject.

1 Introduction

In combinatorial optimization, the tree-search techniques consists in exploring
the solution space by iteratively instantiating variables composing a solution
vector. Their practical efficiency relies on their ability to prune the tree search,
which has an exponential size in the worst case. Founded on these techniques,
Integer Programming (IP) is surely one of the most powerful tools of operations
research. Although limited faced with large-scale combinatorial problems, its
success among practitioners is mainly due to the simplicity of use of IP solvers:
the engineer models its problem as an integer program and the solver solves it
by branch & bound (& cut). Following this observation, a recent trend in Con-
straint Programming (CP) aims to promote the design of effective autonomous
CP solvers. Indeed, this “model & run” approach, when effective, reduces con-
siderably the development and maintenance efforts of optimization softwares.

In contrast, Local Search (LS) consists in applying iteratively some changes
(called moves) to a solution so as to improve this one. Although incomplete, these
techniques are appreciated by operations researchers because they allow to ob-
tain high-quality solutions in short running times (of the order of the minute).
However, designing and implementing local-search algorithms is not straightfor-
ward. The algorithmic layer dedicated to the evaluation of moves is particularly
difficult to engineer, because it requires both an expertise in algorithms and a
dexterity in computer programming. For a survey on the LS paradigm and its
applications, the reader is invited to consult the book by Aarts and Lenstra [1].
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This paper introduces Local Search Programming (LSP), as a paradigm al-
lowing the practitioner to focus on the modeling of the problem using a simple
formalism, and then to let its actual resolution to a solver based on efficient and
reliable local-search algorithms. In other words, our goal is to offer a model & run
approach to combinatorial optimization problems which are out of reach of exist-
ing IP/CP autonomous solvers. In this paper, LocalSolver 1.0 is presented, first
software realization of our works on this subject. This version allows to tackle
a restricted (but important) class of combinatorial optimization problems: as-
signment, partitioning, packing, covering. Distributed under a BSD licence3, the
software can be used in two ways: as an executable program taking in input a file
where the problem is modeled, or as a C++ library for programming quickly ef-
ficient local-search algorithms by overriding some components of the LocalSolver
framework (in particular, heuristics and moves).

The paper is organized as follows. Having reviewed related works in the liter-
ature, the LSP modeling formalism associated with LocalSolver 1.0 is presented.
Then, the architecture and the principal features of the solver are detailed. To
demonstrate the effectiveness of our solver, the results of an extensive compu-
tational study realized with a dozen of academic and industrial benchmarks are
outlined.

2 Related Works

A local-search heuristic is designed according to three layers [11]: search strategy
& (meta)heuristic, moves, algorithms & implementation. Our past experiences
in engineering high-performance local-search algorithms [3, 9–11] have convinced
us that neglecting one of these three layers may yield a significant decrease in
terms of performance.

Most proposals made to offer tools or reusable components for local-search
programmers take the form of a framework handling the top layer of the al-
gorithm, namely metaheuristics (see for example [5, 7]). In this case, moves and
associated incremental algorithms are implemented by the user, while the frame-
work is responsible for applying the selected parameterized metaheuristic. How-
ever, designing moves and implementing incremental evaluation algorithms rep-
resent the largest part of the work (and of the resulting source code); from our
observations, these two layers consume respectively 30% and 60% of the devel-
opment times. As example, the reader is referred to the work of Helsgaun [12]
on the traveling salesman problem. Hence, these frameworks do not address the
hardest issues of the engineering of local-search algorithms. To the best of our
knowledge, there exists no LS-based solver yet, apart from the pioneering work
of Comet [22] (and its ancestor Localizer [16]) and iOpt [25]. These solvers aim
at simplifying the writing of local-search heuristics thanks to a CP-based lan-
guage (Comet) or to a Java library (iOpt). Finally, note that some of the best
solvers for Satisfiability Testing (SAT) or Pseudo-Boolean Programming rely on
stochastic local search (see for example Walksat [21]).

3 http://e-lab.bouygues.com/?p=693
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Our approach to autonomous LS is guided by the following fundamental
principle: the LS solver must work as a LS practitioner works. Two implications
are: the moves performed by the LS solver (tend to) maintain the feasibility of
solutions, and the evaluation of these moves is speeded up by exploiting the basic
invariants induced by the structure of the problem. Then, compared to the above
frameworks or solvers, the main specificities of LocalSolver 1.0 are to provide:
a simple mathematical formalism to model the problem in an appropriate way
for LS resolution, and an autonomous LS-based solver focused on the feasibility
and the efficiency of moves, which can be simply launched and tuned in com-
mand line. In addition, LocalSolver could also be used as a library, allowing to
override each component of the local search: the heuristic, the moves, or even
the evaluation.

3 LSP Modeling Formalism

In the Local Search Programming (LSP) format, a program consists in: decision
variables, intermediate variables, constraints and objectives. Note that, of course,
this file format has a programming interface counterpart in the LocalSolver C++
library. As example, here is described an artificial toy problem which can be
classified as a bin-packing problem. We have 3 objects x, y, z of size 1, 2, 2
respectively, and 3 bins A, B, C knowing that C already contains an object of
size 3. Our goal is to put these objects in the bins so as to minimize the product
of the sizes of the smallest and largest bins if none is empty, and the size of the
largest one otherwise. As secondary objective, we hope that the objects x and y
appear together in a same bin, that either x or z is placed in C but not both,
and that y does not appear in B. In this case, this second objective makes sense
because one shall observe that several solutions exist with optimal cost equal to
4 for the first objective.

xA <- bool(); yA <- bool(); zA <- bool();

xB <- bool(); yB <- bool(); zB <- bool();

xC <- bool(); yC <- bool(); zC <- bool();

constraint booleansum(xA, xB, xC) = 1;

constraint booleansum(yA, yB, yC) = 1;

constraint booleansum(zA, zB, zC) = 1;

display sizeA <- sum(1xA, 2yA, 2zA);

display sizeB <- sum(1xB, 2yB, 2zB);

display sizeC <- sum(1xC, 2yC, 2zC, 3);

sizeMin <- min(sizeA, sizeB, sizeC);

sizeMax <- max(sizeA, sizeB, sizeC);

prefer1 <- or(and(xA, yA), and(xB, yB), and(xC, yC));

prefer2 <- xor(xC, zC);

prefer3 <- not(yB);

minimize if(sizeMin > 0, product(sizeMin, sizeMax), sizeMax);

maximize booleansum(prefer1, prefer2, prefer3);

The statement bool() creates a boolean decision variable. For instance, the
variable xA is true when item x is assigned to bin A. In this 1.0 version, only



4 Benoist et al.

boolean decision variables are allowed, making the LSP formalism close to the
one of 0-1 integer programming. Then, the operator <- is used to define interme-
diate variables (for example, the size of each bin), which can be boolean or inte-
ger. The keyword constraint prefixes each constraint definition; here the three
constraints ensure that each item is assigned to exactly one bin. In the same way,
the keyword minimize and maximize prefixe the two lexicographically-ordered
objectives of the program. Finally, display is used to write at console the values
of the intermediate variables sizeA, sizeB, sizeC during the local search.

Formally, the BNF syntax of a program is:

< lsp > ::= (line)

< line > ::= [display][< modifier >][< naming >] < expression > ;

< modifier > ::= minimize | maximize | constraint
< naming > ::=< identifier > <-

where < expression > shall be detailed in the following section. Then, below
are described the different kind of lines. The ordering of lines in the program is
free, except when defining lexicographic objective functions.

3.1 Decision and Intermediate Variables

All decision variables must be declared somewhere in the program. It is done with
operators bool(), introducing boolean variables. Boolean variables are treated
as integers, with the convention false=0 and true=1. We insist on the fact that
until now, only boolean variables are allowed as decision variables.

Expressions can be built upon these variables by using the native logical,
arithmetic, or relational operators:

< expression > ::= < identifier > | < scalar > |
< scalar >< expression > |
< operator > ([< arglist >]) |
< expression >< comparator >< expression >

< arglist > ::= < expression > [, < arglist >]

< operator > ::= bool | and | or | xor | not | if |
sum | booleansum | min | max | product

< comparator > ::= < | <= | = | > | >= | !=

where < scalar > is a number and < identifier > a variable name.
In summary, LocalSolver uses a functional syntax (only comparators are in-

fixed), with no limitation on the nesting of expressions. Intermediate variables
can be introduced as well with operator <-, either to improve the readability of
the model or to reuse expressions on different lines. Some operators apply only
to a certain number of arguments or to a certain type of variables (see Fig. 1).
For instance, the not operator takes only one argument whose type must be
boolean. The if operator takes exactly three arguments, the first one being
necessarily boolean: if(condition, value if true, value if false). Since
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boolean expressions are actually 0/1 variables, they can be used in all integer
operators.

operators arity input output

bool 0 - boolean

and n boolean boolean
or n boolean boolean
xor n boolean boolean
not 1 boolean boolean
if 3 mixed∗ integer

operators arity input output

sum n integer integer
booleansum n boolean integer

min n integer integer
max n integer integer

product n integer integer

operators arity input output

= 2 integer boolean
<= 2 integer boolean
>= 2 integer boolean
< 2 integer boolean
> 2 integer boolean
!= 2 integer boolean

Fig. 1. Mathematical operators available in LocalSolver 1.0 (∗the if operator takes a
boolean as first argument and some integers as second and third arguments).

Introducing logical, arithmetic, or relational operators has two important
benefits in local search context: expressiveness and efficiency. With such low-level
operators, modeling is easier than with basic IP syntax, while remaining quickly
assimilable by beginners (in particular, for engineers which are not comfortable
with computer programming). On the other hand, the invariants induced by
these operators can be exploited by the internal algorithms of the LS solver to
speed up local search.

3.2 Constraints and objectives

Any boolean expression can be made a constraint by prefixing the line by
constraint. An instantiation of decision variables is valid if and only if all
constraints take value 1, coding for satisfied. When modeling its problem, the
practitioner shall remind that local search is not suited for solving severely con-
strained problems: if some business constraints are not likely to be satisfied, it
is recommended to define them in the objective function (as soft constraints)
rather than as hard constraints. Moreover, LocalSolver offers a feature making
this easy to do: lexicographic objectives.

At least one objective must be defined, using the modifier minimize or
maximize. Any expression can be used as objective. If several objectives are
defined, they are interpreted as a lexicographic objective function. The lexico-
graphic ordering is induced by the order in which objectives are declared. For
instance in car sequencing with paint colors, when the goal is to minimize vi-
olations on ratio constraints and, as a second criterion, the number of paint
color changes, the objective function can be directly specified as: minimize

ratio violations; minimize color changes;. This features allows avoiding
the classical dirty trick where a big coefficient is used to simulate the lexi-
cographic order: minimize 1000 ratio violations + color changes;. Note
that the number of objectives is not limited and can have different directions
(minimization or maximization).
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4 LocalSolver

The command line for solving the above toy problem, granting one second to
LocalSolver 1.0 is:

localsolver.exe io lsp=toy.lsp hr timelimit=1 io solution=toy.sol

Then, the printout on standard output should look like this:

Parsing lspfile toy.lsp... [OK]

Number of nodes : 41 (9 booleans)

Compute initial feasible solution : *** Objective value = ( 5, 2 )

Set descent heuristic : [OK]

Set objective bounds : [OK]

Create autonomous structures : [OK]

Create moves : [OK]

Running localsolver during 1 seconds...

8Path [ 0 / 0 / 1781 ]

7Path [ 0 / 0 / 3587 ]

6Path [ 0 / 0 / 7286 ]

5Path [ 0 / 0 / 14483 ]

4Path [ 0 / 0 / 28889 ]

3Path [ 1 / 2 / 58064 ]

2Path [ 1 / 3 / 115799 ]

*** Total [ 2 / 5 / 229889 ] in 1 seconds

*** Objective value = ( 4, 2 ) ( Time = 0 seconds, Nb iterations = 26 )

sizeA = 4

sizeB = 0

sizeC = 4

Final solution : *** Objective value = ( 4, 2 )

Writing solution in file toy.sol : [OK]

The cost of the initial feasible solution found by LocalSolver is (5, 2), mean-
ing 5 for the first objective and 2 for the second one. The output solution, found
by local search after 26 iterations, has cost (4, 2). During the second of allocated
time, LocalSolver has performed 229 889 iterations, which corresponds to the to-
tal number of moves attempted, and also to the number of (feasible or infeasible)
solutions visited during the search. Among these moves, 5 have been committed
and 2 have strictly improved the cost of the current solution. These statistics
are detailed for each move used by the autonomous solver. All these indicators
shall be of interest for tuning LocalSolver. Finally, it creates the file “toy.sol”
with the solution:

xA=0; yA=1; zA=1; xB=0; yB=0; zB=0; xC=1; yC=0; zC=0;
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A LSP program, as defined above, can be represented through a directed
acyclic graph (DAG), whose roots are the decisions variables and whose leaves
are the constraints and objectives (see Fig. 2). Then, the operators used to model
the problem induce the inner nodes of the DAG. These inner nodes are related
to “invariants” or “one-way constraints” in softwares like iOpt [25] or Comet
[22]. With this representation, a solution corresponds to an instantiation of the
root variables. In this context, applying moves to the current solution consists
in modifying the current values of the decision variables (roots) and evaluating
constraints and objectives (leaves) by propagating these modifications along the
DAG.

obj

bool bool bool bool bool bool

x1 x3x2 y1 y2 y3

sysx

≤ ≥

const bsumbsum

minimize

constraint constraint

2

max

Fig. 2. The directed acyclic graph (DAG) induced by a simple model. For each node,
the type (resp. name) of the node is given above (resp. below). Here “bsum” stands
for booleansum.

LocalSolver is composed of 4 open components, corresponding each one to
a software library: dag, parser, solver, autonomous. Roughly speaking, Local-
Solver follows the three-layers methodology of the authors [11] for designing and
engineering high-performance local-search heuristics. A sequence diagram de-
scribing the main interactions between the three layers (heuristic, moves, evalu-
ation) of LocalSolver is sketched on Fig. 3. Resolutely oriented towards simplicity
and efficiency, the design and implementation of LocalSolver have required a con-
siderable effort in terms of software and algorithm engineering, which cannot be
entirely detailed here. Hence, our presentation will be focused on the two crucial
aspects of the solver: the evaluation algorithms and the autonomous moves.

4.1 Evaluation algorithms

Each node of the DAG must implement the following methods: init, eval,
commit, rollback, check. The method init is responsible of the initialization
of the value of the node according to (the values of) its parents, before starting
local search. The specific data structures attached to the node, used for speed-
ing up its incremental evaluation, are also initialized by this method. Having
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solver::Heuristic::run()

*[!isTimeToStop()]

↪→ solver::Heuristic::selectMove()

↪→ solver::Move::modify()

↪→ solver::Move::eval()

↪→ solver::Propagation::eval()

↪→ *[nbImpactedNodes] dag::Node::eval()

↪→ isMoveAccepted := solver::Heuristic::decide()

↪→ solver::Move::update()

↪→ [isMoveAccepted] solver::Propagation::commit()

↪→ *[nbModifiedNodes] dag::Node::commit()

↪→ [else] solver::Propagation::rollback()

↪→ *[nbModifiedNodes] dag::Node::rollback()

Fig. 3. Simplified sequence diagram of a local search in LocalSolver ([isMoveAccepted]
defines a condition; *[!isTimeToStop()] defines a while-loop with stop condition
isTimeToStop(); *[nbImpactedNodes] defines a for-loop over nbImpactedNodes itera-
tions).

applied a move on decision variables, the eval method is called for incremen-
tally reevaluated the value of a node, when this one is impacted during the DAG
propagation. Then, if the move is accepted by the heuristic, then the commit

method is called on each modified node for validating the changes implied by
the move. Otherwise, the move is rejected, and the rollback method is used
instead. The reliability of the three previous routines, which are highly opti-
mized through incremental calculations, is ensured by the check method which
allows to check the correctness of all data structures of the node through brute
calculations (in debug mode).

As mentioned above, the fast evaluation of moves is obtained by exploiting
invariants related to each type of nodes. A breadth-first search propagation of
the modifications is performed along the DAG, guarantying that each node is
evaluated at most once. Following a classical observer pattern, the propagation
is reduced to impacted nodes: a node is said to be impacted if some of its parents
have been modified. For example, consider the node z ← a < b with a current
value equals to true. This one will not be impacted if a is decreased or b increased.
Then, to each node is associated an eval method called for computing the new
value of the node when impacted. This method takes in input the list of modified
parents (that is, the parent nodes whose current value has changed). For a linear
operator like sum, evaluation is easy: if k terms of the sum are modified, then
its new value is computed in O(k) time. But for other operators (arithmetic
or logical), significant accelerations can be obtained in practice. For example,
consider the node z ← or(a1, . . . , ak) with M the list of modified ai’s. The list T
of ai’s whose value is true is maintained. Thus, one can observe that if |M | ̸= |T |,
then the new value of z is necessarily true, leading to a constant-time evaluation.
Indeed, if |M | < |T |, then at least one parent remains with value equals to true;
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otherwise, there exists at least one parent whose value is modified from false to
true.

4.2 Autonomous moves

As suggested in introduction, our ultimate goal is to autonomously perform the
moves that a practitioner would have been designed to solve its problem. In this
first version of LocalSolver, the autonomous moves can be viewed as a gener-
alization of ejection chains [19] applied to the hypergraph induced by boolean
variables and constraints. For example, let us consider the car sequencing prob-
lem [9, 10]: cars must be ordered in the production line so as to minimize a non
linear objective. This problem can be modeled as an assignment problem by
defining for each car i and position p a boolean variable xi,p. A basic neighbor-
hood for this model consists in exchanging the positions of two vehicles. In terms
of variables, exchanging the positions p and q of two cars i and j corresponds to
flipping successively the 4 boolean variables xi,p, xi,q, xj,q, xj,p while preserving
the feasibility of the 4 partition constraints where these variables appear. In a
generic way, our autonomous moves are shown to simulate k-moves and k-swaps
on packing/covering problems.

Define a root sum as a sum involving at least two binary decision variables
either directly or multiplied by a scalar. A data structure is built listing all root
sums in the DAG and for each binary decision variable, the list of root sums it
belongs to. Besides, we maintain for each root sum the set of increasing booleans,
namely decision variables whose change would increase the sum, and the com-
plementary of this set (that is, the decreasing booleans). Using this structure,
we can perform moves trying to find an alternating path of increasing and de-
creasing booleans such that two consecutive variables are involved in the same
root sum. To obtain an alternating cycle, as in the above example, we can also
enforce the same properties for the last and first variables in the path. The key
idea of such moves, called k-Paths or k-Cycles, is to circularly repair modified
sums, by applying an opposite change at each step and finally repairing the first
and last sum simultaneously. Since in practice root sums are generally involved
in constraints, k-Paths and k-Cycles tend to maintain the feasibility of the solu-
tion. For instance, when the root sums define a complete matching problem, any
k-Cycle with k even can be completed (that is, closed without failing) in O(k)
time.

Changing the definition of root sums leads to variants which can be of interest
for practically speeding up the convergence of the local search. For instance, we
can focus on sums having at least one constraint among their successors in the
DAG, or on sums involving only decisions variables. For the selection of the next
sum to be repaired, we may also favor sums on which an equality constraint is
set because the move cannot succeed without repairing these sums. Finally, a
promising direction consists in flipping more than one variable per constraint.
This extension follows the same logic as the generalization from ejection chains
to ejection trees [6]. For instance, it allows ejecting two objects of size 1 when
adding an object of size 2 in a set, in packing problems.
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5 Experimental Results

LocalSolver 1.0 was tested on a benchmark mixing academic and industrial prob-
lems. We insist on the fact that our purpose is not to reach state-of-the-art results
for all these problems. The primary goal of LocalSolver is to obtain some results
similar to the ones obtained by standard local-search heuristics. The second
goal is to obtain good-quality solutions with short running times, in particular
when IP/CP solvers fail to find any solution. Each problem addressed in the
benchmark is briefly described, and sample results are presented. Comparisons
with IP approaches are done using the noncommercial solver GLPK 4.24 [15]
(implementing a classical branch & bound & cut algorithm); this solver, widely
used by OR practitioners, was reported to be one of the best non commercial IP
solvers, in particular to quickly obtain good feasible solutions [14]. All numer-
ical experimentations were performed on a standard computer equipped with
the operating system Windows XP SP3 and the chip Intel Core 2 Duo T7600
(2.33 GHz, RAM 2 Go, L2 4 Mio, L1 64 Kio). Note that all results presented
here have been rigorously checked; in particular, having recovered the business
solution from the mathematical one, all the constraints and the objective values
are verified.

Car sequencing. The car sequencing problem [9, 13] consists in ordering cars on
an assembly line while minimizing violations on ratio constraints. Sample results
are presented for 5 instances on Table 1 below: 10-93 (100 vehicles, 5 options,
25 classes), 200-01 (200 vehicles, 5 options, 25 classes), 300-01 (300 vehicles,
5 options, 25 classes), 400-01 (400 vehicles, 5 options, 25 classes), 500-08 (500
vehicles, 8 options, 20 classes). The first 4 instances are available in CSPLib
[13]; the fifth comes from a benchmark generated by Perron and Shaw [17]. The
“state-of-the-art LS” corresponds to the high-performance local-search algorithm
presented in [9], which currently owns the best results on all car sequencing
benchmarks. “LocalSolver 1.0 (white)” means that LocalSolver 1.0 is used as
library: here classical moves for car sequencing (swaps, shifts, inversions) [9]
have been implemented in the LocalSolver framework, and their evaluation is let
to the solver. “LocalSolver 1.0 (black)” means that LocalSolver 1.0 is used as
black box (with default parameters, unless otherwise stated). “IP GLPK 4.24”
corresponds to the IP solver provided by GLPK 4.24 [15]. The results presented
in the top (resp. bottom) table have been obtained with a time limit fixed to
60 (resp. 600) seconds. The cost of the best solution found is given, with in
parenthesis the time at which this solution has been reached (the symbol “x” is
used if no solution has been obtained within the time limit). Note that additional
tests done with the state-of-the-art commercial solver FICO Xpress-Optimizer
which confirm that the gap between commercial and noncommercial IP solvers
is thin when tackling highly combinatorial problems like car sequencing. Indeed,
for instance 10-93, Xpress obtains solutions of cost 30 (after 54 s) and 3 (after
136 s); for instance 200-01, it obtains solutions of cost 73 (after 41 s) and 67
(after 72 s).
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time limit: 60 s 10-93 200-01 300-01 400-01 500-08

state-of-the-art LS 3 (4) 0 (4) 0 (21) 1 (56) 0 (3)
LocalSolver 1.0 (white) 3 (28) 1 (42) 4 (47) 7 (59) 14 (55)
LocalSolver 1.0 (black) 7 (30) 10 (56) 21 (51) 28 (57) 51 (55)
IP GLPK 4.24 10 (49) x (x) x (x) x (x) x (x)

time limit: 600 s 10-93 200-01 300-01 400-01 500-08

state-of-the-art LS 3 (4) 0 (4) 0 (21) 1 (56) 0 (3)
LocalSolver 1.0 (white) 3 (26) 0 (63) 1 (285) 2 (495) 0 (333)
LocalSolver 1.0 (black) 6 (68) 5 (551) 7 (484) 14 (365) 23 (467)
IP GLPK 4.24 10 (49) 18 (361) 11 (403) x (x) x (x)

Table 1. Sample results on the academic car sequencing problem.

time limit: 600 s X2 X3 X4

state-of-the-art LS 0, 192, 66 (1/19) 0, 337, 6 (1/19) 0, 160, 407 (1/19)
LocalSolver 1.0 (white) 0, 249, 89 (16/19) 0, 445, 62 (10/19) 0, 192, 695 (13/19)
LocalSolver 1.0 (black) 0, 268, 212 (16/19) 36, 544, 187 (16/19) 2, 353, 692 (18/19)

Table 2. Sample results on the Renault’s car sequencing problem: X2, X3, X4 corre-
spond to instances of set X named 023-EP-RAF-ENP-S49-J2, 024-EP-RAF-ENP-S49-
J2, 025-EP-ENP-RAF-S49-J1 respectively. The ranking of each result relatively to the
18 finalists of the ROADEF Challenge is given in parenthesis.

A real-world version integrating the constraints and objectives of paint work-
shop was proposed by the car manufacturer Renault as subject of the ROADEF
2005 Challenge [10] (which is an OR competition yearly organized by the French
Operations Research Society). Three lexicographic objectives have to be opti-
mized in this version: EP = violations on high priority ratio constraints, ENP =
violations on low priority ratio constraints, RAF = violations on paint color
changes. Table 2 contains sample results for 3 very large-scale instances in-
tractable by any IP/CP solver [18]: X2 (1260 vehicles, 12 options, 13 colors),
X3 (1319 vehicles, 18 options, 15 colors), X4 (996 vehicles, 20 options, 20 col-
ors). The “state-of-the-art LS” corresponds to the local-search heuristic which
won the challenge [10]. In white-box mode, the search is started with the ini-
tial solution provided by Renault and the same moves than the ones described
above for the academic car sequencing are implemented. In black-box mode,
the results are obtained with specifying the following options: hr timelimit=600

hr objbounds=0:0,1:0,2:0 hr descent=phase:90,99,100 mv kpaths=4:1000,6:100,

8:10,10:1. For instance X2, the resulting LS program contains 516 936 variables
whose 374 596 are binary decision variables (450 Mo of RAM are allocated dur-
ing the execution). In both modes, Localsolver performs between that 1.5 and
4.5 million moves per minute, with an acceptation rate between 5 and 20% and
nearly a thousand (strictly) improving solutions. Observe that LocalSolver used
as white (resp. black) box outperforms (resp. is comparable to) the hand-made
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variable neighborhood search by Prandtstetter and Raidl [18] mixing classical
moves and large neighborhood search by IP (using ILOG CPLEX).

Social golfer. The social golfer problem [13] consists in assigning persons to
groups over several weeks so as to maximize the number of meetings. A real-
life version is encountered at Bouygues SA for scheduling the managers’ sem-
inars. Sample results are presented on Table 3. Three classical instances are
addressed: 10-10-3 (10 groups of 10 players for 3 weeks), 10-9-4, 10-3-13. In this
case, the objective is to minimize the number of duplicate meetings. The fourth
one, named “seminar”, is a real-life instance (120 persons over 3 weeks with
group sizes between 7 and 9) with additional constraints on groups and three
lexicographic objectives: balancing the characters into each group, avoiding the
undesired meetings, maximizing the number of (desired) meetings. For classi-
cal instances, the “state-of-the-art LS” corresponds to the tabu-search heuristic
presented in [8], which currently owns the best results on almost all social golfer
benchmarks. For the real-life instance, “state-of-the-art LS” corresponds to the
local-search algorithm which was implemented by one of the authors as opera-
tional solution: a first-improvement descent performing efficient swaps. Note that
due to the quadratic form of the objective function, such a problem is particu-
larly difficult to tackle by IP techniques. For almost all instances, GLPK is not
able to compute the initial LP relaxation during the time limit, because of the
large number of variables (hundreds of thousands) implied by the linearization.

time limit: 60 s 10-10-3 10-9-4 10-3-13 seminar

state-of-the-art LS 0 0 0 1, 0, 1082
LocalSolver 1.0 (white) 0 5 3 1, 0, 1082
LocalSolver 1.0 (black) 0 7 3 1, 0, 1082
IP GLPK 4.24 x x x x

Table 3. Sample results on the social golfer problem.

Steel mill slab design. The steel mill slab design problem [23, 13] is a variant
of the celebrated cutting-stock problem, where orders of different sizes have to
be packed onto slabs of different capacities such that the total slab capacity
is minimized. The classical instance of CSPLib with 111 orders [13] is solved
to optimality (cost equal to 0) in less than 1 second by LocalSolver, which
outperforms most of the previous approaches (see [23] for the state of the art).
Note that GLPK is not able to obtain a feasible solution within 1 hour. The
LSP treated by LocalSolver in this case contains 40 739 variables with 12 321
booleans; LocalSolver attempts more than 5 millions moves per minute.
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Spot 5 photographs scheduling. The spot 5 daily photograph scheduling
problem [24] consists in selecting the subset of photos to be shot by the Spot
5 satellite; the goal is to maximize a profit function subject to knapsack con-
straints and mutual exclusion constraints. The larger instances addressed in the
literature (multi-orbit case) contains at most one thousand photos in input,
which makes them efficiently tractable by IP solvers today. Sample results are
presented on Table 4. The results reported by Vasquez and Hao [24] are given
on the line “Vasquez-Hao” of the table. For single-orbit instances 5, 54 and 509,
these ones are proven to be optimal; for multi-orbit instances 1407 and 1506,
these ones are shown to be near-optimal (gap lower than 1%). Note that these
near-optimal results have been obtained by a tabu-search heuristic. The main
conclusion of this experience is that LocalSolver remains competitive face to IP
solvers, even for tackling problems tractable by tree-search techniques. Another
interesting remark is that the autonomous moves performed by LocalSolver may
lead to better solutions than moves implemented by hand (k-moves and k-swaps
of photos).

time limit: 60 s 5 54 509 1407 1506

Vasquez-Hao 115 70 19 125 176 245 168 247
LocalSolver 1.0 (white) 103 69 19 107 165 243 140 260
LocalSolver 1.0 (black) 105 69 19 118 156 250 152 247
IP GLPK 4.24 114 70 13 110 161 230 156 234

Table 4. Sample results on the spot 5 photographs scheduling problem.

Minimum formwork stock. The minimum formwork stock problem [4], en-
countered at Bouygues Construction, aims at minimizing the shuttering mate-
rial used on a construction site. Once decomposed, the master problem can be
viewed as a covering problem, whose scale makes it efficiently tractable by IP
solvers. Sample results are presented on Table 5. Observe that the autonomous
moves performed by LocalSolver lead to better solutions than hand-made moves
(k-swaps of formworks).

time limit: 60 s site1 site8b site12b site13b

LocalSolver 1.0 (white) 5 669 638 5 679 798 9 355 316 7 868 796
LocalSolver 1.0 (black) 5 640 326 5 640 398 9 223 040 7 729 336
IP GLPK 4.24 5 630 426 5 409 300 8 392 256 7 408 566

Table 5. Sample results on the minimum formwork stock.
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Eternity II. The Eternity II problem [2, 20] is a very challenging (and recre-
ative) edge-matching puzzle edited by the Tomy company in 2007. The puzzle
consists in filling a 16×16 square board with 256 square tiles, the four sides of
each tile being colored. The goal is to find an assignment of tiles to the board
such that the sides of every adjacent pair of tiles have the same color. Such a
problem can be modeled as an optimization problem: assign all tiles to the board
while minimizing the number of pairs of tiles violating the color constraints. To
our knowledge, the best solution found so far has 13 violations (over 480). Schaus
and Deville [20] report a solution with 22 violations, computed by large neighbor-
hood tabu search with 1 day of running time. Interestingly, they obtain solutions
with nearly 70 violations by using only swaps of tiles with tabu search. We ob-
tain a solution with 51 violations in 1 day of running time by using LocalSolver
as white box (by implementing a threshold heuristic with appropriate moves).
In this case, LocalSolver performs nearly one million moves per minute while the
LS program contains 262 144 binary decision variables.

6 Conclusion

The above results demonstrate that Local Search Programming is possible: a
model & run paradigm for local search can be obtained by combining a simple
modeling grammar and an efficient incremental solver based on appropriate au-
tonomous moves. Hence, the next version of LocalSolver is envisaged following
several research directions. First, the LSP formalism is far from being achieved:
our main preoccupation is to add the notion of sets without losing simplicity
and genericity. This step is crucial for tackling complex scheduling and rout-
ing problems. Then, the concept of autonomous moves maintaining feasibility,
which is a key of our approach, has to be reinforced and developed yet. Finally,
we have planed to add threshold metaheuristics [1] to the top layer of the solver,
in addition to the standard descent.
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