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1 Introduction

The following problem arises in scheduling theory: n unit-time jobs must be com-
pleted on k processors in a minimum time with the constraint that some jobs cannot
be executed at the same time because they share the same resources. Many variants
of this problem have been considered in combinatorial optimization and operations
research literature (see Blazewicz et al. (1996) for a survey). Such a scheduling
problem can be alternatively formulated in graph-theoretic terms: by creating an
undirected graph G = (V,E) with a vertex for each of the n jobs and an edge
between each pair of conflicting jobs, a schedule of minimum length corresponds
to a partition of V into a minimum number of independent sets of size at most k.
Therefore, Baker and Coffman (1996) called the following restricted coloring prob-
lem mutual exclusion scheduling, shortly mes: given an undirected graph G
and an integer k, find a minimum coloring of G such that each color appears at
most k times.

Since the classical coloring problem is NP-hard for arbitrary graphs, mes is im-
mediately NP-hard too. Thereby, the problem was approched for different classes
of graphs for which the coloring problem is in P, in particular perfect graphs (see
Golumbic (1980) for an introduction to the world of perfect graphs). Neverthe-
less, mes was proved NP-hard for many of them like bipartite graphs, cographs,
interval graphs and chordal graphs (Bodlaender and Jansen (1995)), permutation
graphs and comparability graphs (Jansen (1998)). To the best of our knowledge, mes
is polynomially solvable only with trees and forests (Baker and Coffman (1996)),
split graphs (Lonc (1991)), complements of interval graphs (Bodlaender and Jansen
(1995)) and proper interval graphs (Gardi (2003)). For an overview of the complex-
ity results concerning mes, see Jansen (1998) and for other practicle applications,
consult Bodlaender and Jansen (1995), Baker and Coffman (1996), Irani and Leung
(1996) and Gardi (2003).

For an undirected graph G, the cardinality of a minimum coloring, or chromatic
number, is denoted by χ(G). In the same way, χ(G, k) shall define the cardinality
of a minimum coloring of G such that each color marks at most k vertices; note
that χ(G, k), which corresponds to the length of an optimal schedule in the initial
formulation, has two straightforward lower bounds: χ(G) and dn/ke. According to
the previous discussions, computing χ(G, k) or optimal schedules is generally an
NP-hard problem. However, are there some interesting cases where the problem is
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easily solvable ? In Gardi (2003), the author establishes that if an interval graph
G admits a coloring such that each color appears at least k times, then χ(G, k) =
dn/ke; moreover, an optimal solution is computed in linear time, given in input
the graph G and its initial coloring. Such a condition is shown to be practically
interesting because for many mes instances, simple coloring heuristics or real-life
structural properties enable us to obtain it. In this note, the sufficiency of this
condition is investigated for larger classes of graphs including strictly interval and
proper interval graphs, namely chordal graphs, complements of comparability graphs,
circular-arc graphs, tolerance graphs and claw-free graphs. But before giving our
results, some basic definitions are recalled concerning these different classes.

2 Interval graphs and related classes

A graph G = (V,E) is an interval graph if to each vertex v ∈ V an interval Iv of the
real line can be associated such that for each pair of distinct vertices, uv ∈ E if and
only if Iu ∩ Iv 6= ∅. The family {Iv}v∈V is an interval representation of G. A graph
G is called proper interval graph if there is an interval representation of G such that
no interval contains properly another. The class of interval graphs coincide with the
intersection of the classes of chordal graphs and of complements of comparability
graphs (called shortly co-comparability graphs). A graph is chordal if it contains no
cycle of length greater or equal than four without a chord; chordal graphs are the
intersection graphs of subtrees in a tree. Comparability graphs are the transitively
orientable graphs, they correspond to graphs of partial orders.

Interval graphs have two natural extensions: circular-arc graphs and tolerance
graphs. Circular-arc graphs are the intersection graphs obtained from collections
of arcs on a circle. Note that a circular-arc representation {Av}v∈V of a graph
G which fails to cover some point p on the circle is topologically the same as an
interval representation of G. A graph G = (V,E) is a tolerance graph if to each
vertex v ∈ V can be assigned an interval Iv and a positive real number tv referred
to as its tolerance, such that each pair of distinct vertices u, v ∈ V are adjacent if
and only if |Iu ∩ Iv| ≥ min{tu, tv}. The family {Iv}v∈V is a tolerance representation
of G. When G has a tolerance representation such that the tolerance of each vertex
v ∈ V is smaller than the length of Iv, the one is called bounded tolerance graph; such
graphs are shown to be co-comparability graphs (Golumbic and Monma (1982)).

Finally, a graph is known as claw-free if it contains no induced copy of a tree
composed of one central vertex and three leaves (commonly called a claw). One can
easily observe that proper interval and circular-arc graphs cannot contain a claw,
and also belong to the class of claw-free graphs.

Interval graphs, chordal graphs, comparability graphs, tolerance graphs are per-
fect and also are colorable in polynomial time. On the other hand, coloring circular-
arc graphs or claw-free graphs is an NP-hard problem. Besides, the recognition
of all these graphs, except tolerance graphs, is done in polynomial time. For more
details about these classes of graphs and their applications, the reader is referred
to Golumbic (1980) and Branstadt et al. (1999). See also Figure 1 for a complete
hierarchy of the classes.
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Fig. 1. The hierarchy: “class F → class G” means “class F ⊂ class G”.

3 The main results

Here some extensions of the result concerning interval graphs (Gardi (2003)) are pro-
vided for circular-arc graphs, claw-free graphs and chordal graphs. To show how these
extensions are surprising, a very simple counterexample is given for the classes of tol-
erance graphs and of co-comparability graphs: Kk+1,k+1 which is the complete bipar-
tite graph on 2k+2 vertices partitioned into two independent sets of size k+1. In ef-
fect, this graph has the following bounded tolerance representation: define k+1 inter-
vals I0 = [0, 1], I1 = [2, 3], . . . , Ik = [2k, 2k+1] with tolerances t0 = t1 = · · · = tk = 0
and k + 1 intervals Ik+1 = Ik+2 = · · · = I2k+1 = [0, 2k + 1] with tolerances
tk+1 = tk+2 = · · · = t2k+1 = 2k + 1. It is easy to notice that χ(Kk+1,k+1, k) = 4
since two vertices of different independent sets cannot be matched. Now, this bound
is strictly larger than the lower bound dn/ke = d(2k + 2)/ke = 3 for all k ≥ 2.

The first positive result concerns the class of circular-arc graphs: the constructive
proof given in Gardi (2003) for interval graphs is extended to obtain the following
proposition.

Proposition 1. Let G be a circular-arc graph on n vertices and k an integer. If
G admits a coloring such that each color appears at least k times, then χ(G, k) =
dn/ke. Moreover, an optimal solution to mes is computed in linear time for a given
initial coloring.

The second proposition extends the result which holds for proper interval graphs,
and circular-arc graphs according to the previous one. Moreover, an algorithmic
characterization of claw-free graphs is provided through the mes problem.

Proposition 2. An undirected graph G with n vertices is claw-free if and only if
χ(G, k) = max{χ(G), dn/ke} for any integer k. Moreover, mes is solvable in O(n2)
time for a given minimum coloring of G.

The proof of this result uses chromatic exchanges (notion early developped by De
Werra (1985)) coupled with suitable data structures. Finally, the next proposition
starts an attempt of extension for chordal graphs.

Proposition 3. Let G be a chordal graph on n vertices and an integer k ≤ 4. If
G admits a coloring such that each color appears at least k times, then χ(G, k) =
dn/ke.
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Three different proofs are written for the case k = 3. Unfortunately, these proofs
are only existential and the proof for k = 4 becomes fastidious. However, having no
counterexamples for k ≥ 5, we conjecture that the proposition may remain valid for
all k.

4 Conclusion

As conclusion, a general conjecture is proposed which includes the three previous
propositions.

Conjecture 1. Let G an arbitrary graph on n vertices and k an integer. If there
exists a partition S1, . . . , Sq of G into q independent sets of size at least k such that
for all pairs (S′i, S

′
j), S′i ⊆ Si and S′j ⊆ Sj , the number of edges of the bipartite graph

induced by (S′i, S
′
j) is lower or equal than its number of vertices, then χ(G, k) =

dn/ke.
Circular-arc graphs, claw-free graphs and chordal graphs satisfy this property.

This one can be also viewed as follows: the bipartite graph induced by (S′i, S
′
j) forms

a tree with an additional edge.
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