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Abstract. In this note, we establish that any interval or circular-arc
graph with n vertices admits a partition into O(log n) proper interval
subgraphs. This bound is shown to be asymptotically sharp for an infinite
family of interval graphs. Moreover, the constructive proof yields a linear-
time and space algorithm to compute such a partition. The second part
of the paper is devoted to an application of this result, which has actually
inspired this research: the design of an efficient approximation algorithm
for a NP-hard problem of planning working schedules.

1 Introduction

An undirected graph G=(V,E) is an interval graph if to each vertex v ∈ V can be
associated an open (resp. closed) interval Iv of the real line, such that any pair of
distinct vertices u, v are connected by an edge of E if and only if Iu∩Iv 6= ∅. The
family {Iv}v∈V is an interval representation of G; the left and right endpoints of
Iv are respectively denoted by le(Iv) and re(Iv). The edges of the complement
graph G are transitively orientable by setting u → v if ru < lv; the orientation
of the edges induces a partial order called interval order (we shall write Iu ≺ Iv

if ru < lv). In the same way, the intersection graph of collections of arcs on a
circle is called circular-arc graph. A circular-arc representation of an undirected
graph G which fails to cover some point p on the circle will be topologically the
same as an interval representation of G. In effect, we can cut the circle at p and
straighten it out a line, the arcs becoming intervals. It is easy to notice therefore,
that every interval graph is a circular-arc graph.

An interval graph G is called proper interval graph if there is an interval
representation of G such that no interval contains properly another. A nice result
of Roberts (1969, cf. [13, 6]) establishes that proper interval graphs coincide with
unit interval graphs, the interval graphs having an interval representation such
that all intervals have the same size, and K1,3-free interval graphs, the interval
graphs without induced copy of a tree composed of one central vertex and three
leaves.
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The main result. Interval and circular-arc graphs have been intensively stud-
ied for several decades by both discrete mathematicians and theoretical computer
scientists. These two classes of graphs are particulary known for providing nu-
merous models in diverse areas like scheduling, genetics, psychology, sociology,
archæology and others. For surveys on all results and applications concerning
interval and circular-arc graphs, the interested reader is referred to [13, 6, 8].

In this note, the problem of partitioning interval or circular-arc graphs into
proper interval subgraphs is investigated. Two questions can be raised concerning
this problem. The first, rather asked by the mathematician is: could you find good
lower and upper bounds on the size of a minimum partition of an interval or
circular-arc graph into proper interval subgraphs ? The second, rather asked by
the computer scientist is: could you find an efficient algorithm to compute such
a minimum partition ? An answer to the first question is given in this paper,
through the following theorem. Although the result provides some advances on
the second question (discussed in Conclusion), this one remains open at our
knowledge.

Theorem 1. Any interval graph or circular-arc graph with n vertices admits a
partition into O(log n) proper interval subgraphs. Moreover, this bound is asymp-
totically sharp for an infinite family of interval graphs.

The constructive proof of the result (described Section 2) yields a linear-time
and space algorithm to compute such a partition. Thereby, this result could find
applications in the design of approximation algorithms for hard problems on
interval or circular-arc graphs, since many untractable problems for these graphs
become easier for proper interval graphs. In the second part of the paper, we
present such a kind of application in the area of working schedules planning,
which has actually inspired this research.

Applications. The problem of planning working schedules holds an important
place in operations research and business administration. In a schematic way,
the problem consists in the assignment of fixed tasks to employees in the form of
shifts. The tasks of the shift allocated to an employee, which induce his working
schedules, must be pairwise disjoint (non-intersecting). Here a problem derived
from schedules planning problems solved by the firm Prologia - Groupe Air
Liquide [12] is considered. This fundamental problem, denoted WSP, is defined
as follows. Let {Ti}i=1,...,n be a set of tasks having respective starting and ending
dates (li, ri). The regulation imposes that any employee cannot execute more
than k tasks. Given that the tasks allocated to an employee must not overlap,
build an optimal planning according to the following objectives: on a first level,
reduce the number of shifts or employees (productivity) and then on a second
level, balance the planning (social) and prevent as well as possible the future
modifications of the planning (robustness).

Since the tasks are simply some intervals of the real line, the WSP problem
can be reformulated in graph-theoretic terms as the problem of coloring an
interval graph such that each color marks at most k vertices. When the planning
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is cyclic, we obtain the same coloring problem with circular-arc graphs. In this
model, the optimization criteria become respectively: to minimize the number of
colors (P ), balance the number of vertices in each color class (S) and maximize
the smallest gap existing between two consecutive intervals or arcs having the
same color (R). In fact, the criterion R prevents overlappings when some intervals
or arcs are delayed or put forward. Hence, a solution to WSP is called (P )-optimal
(resp. (S, R)-optimal) if it is optimal according to criterion P (resp. criteria S
and R). Then, a (P |S, R)-optimal solution is defined to be one which is (S,R)-
optimal among all (P )-optimal solutions.

The complexity of WSP for interval graphs was recently investigated with
the single optimization criterion P . Bodlaender and Jansen [2] have shown that
this is a NP-hard problem even for fixed k ≥ 4; the problem for k = 3 remains
an open question at our knowledge. For k = 2, this is solved in linear time and
space by matching techniques [1, 5]. Unless P = NP, the inherent hardness of the
problem condemns us to design efficient heuristics for finding “good” solutions.
In this way, linear-time approximations are presented for the WSP in the second
part of the paper (Section 3). A classical algorithm is briefly described which
achieves a constant worst-case ratio for the single criterion P . Unfortunately,
such an algorithm offers no guarantee on the satisfiability of criteria S and R.
Surprisingly, the WSP problem for proper interval graphs is proved to be solvable
in a (P |R, S)-optimal way by a greedy algorithm. Thus, an idea is to partition
the input interval graph into proper interval subgraphs and solve optimally the
problem on each subgraph using the greedy. Obviously, the quality of such a local
optimization depends strongly on how the input interval graph is partitionned.
Hence, the theorem previously cited enables us to design a new algorithm which
achieves a logarithmic worst-case ratio for criterion P , but moreover guaran-
tees that (P |R, S)-optima are reached in a logarithmic number of subproblems.
Finally, we remark that in real-life situations, ie. under certain conditions, the
logarithmic worst-case ratio becomes constant.

Preliminaries. Before giving the first results, some useful notations and defi-
nitions are detailed. All the graph-theoretic terms not defined here can be found
in [13, 6]. Let G = (V,E) be an undirected graph. For simplicity, n and m de-
note respectively the number of vertices and edges of G throughout the paper. A
complete set or clique is a set of pairwise connected vertices. The clique number
ω(G) is the cardinality of the largest clique in G. On the opposite, an indepen-
dent set or stable is a set of pairwise non-connected vertices. A coloring of G
associates to each vertex one color in such a way that two connected vertices
have different colors. In fact, a coloring of G corresponds to a partition of G
into stables. The chromatic number χ(G) is the cardinality of a partition of G
into the least number of stables. In the same way, χ(G, k) is defined to be the
size of a minimum partition of G into stables of size at most k. The quality of
our approximation algorithms in relation to the criterion P is measured by their
worst-case ratio defined as supG{|S|/χ(G, k)} where S is any partition of G into
stables of size at most k output by the algorithm.
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2 The proof of Theorem 1

Although offering only a linear upper bound, the following lemma is crucial in
the proof of the theorem.

Lemma 1. Let G = (V, E) be a K1,t-free interval graph with t ≥ 3. Then G
admits a partition into bt/2c proper interval subgraphs. Moreover, this partition
is computed in linear time and space.

Proof. An algorithm is proposed for computing such a partition. Synthetically,
the algorithm extracts and colors greedily some cliques of G with the set of colors
{1, . . . , bt/2c}; the output is the partition of G induced by these bt/2c colors.

Algorithm ColorCliques

input: a K1,t-free interval graph G = (V, E) with t ≥ 3;

output: a partition of G into bt/2c proper interval subgraphs;

begin

compute an interval representation I1, . . . , In of G;

order I1, . . . , In according to the left endpoints;

C1 ← · · · ← Cbt/2c ← ∅, i ← 1, j ← 1;

while i ≤ n do

Cj ← {Ii}, Ileft ← Ii, i ← i + 1;

while i ≤ n and Ileft ∩ Ii 6= ∅ do

Cj ← Cj ∪ {Ii};
if re(Ii) < re(Ileft) then Ileft ← Ii;

i ← i + 1;

c ← (j − 1) mod bt/2c + 1, Cc ← Cc ∪ {Cj}, j ← j + 1;

return C1, . . . , Cbt/2c;
end;

Since computing an ordered interval representation is done in O(n+m) time
and space [4, 9], the algorithm runs in linear time and space. This correctness is
established by showing that the color class Cc induces a proper interval graph for
any c ∈ {1, . . . , bt/2c}. Let Cc = {Cc

1, . . . , C
c
q} be the set of cliques assigned to

Cc by the algorithm (in the order of their extraction). If q ≤ 2 then Cc is trivially
K1,3-free. Otherwise, suppose that Cc contains an induced subgraph K1,3 with Ia

its central vertex and Ib ≺ Ic ≺ Id its three leaves. Clearly, the leaves belong to
disjoint cliques: set Ib ∈ Cc

u, Ic ∈ Cc
v and Id ∈ Cc

w with u < v < w ∈ {1, . . . , q}.
According to the algorithm, Ia belongs necessarily to Cc

u. Now, from every clique
Cj colored by the algorithm between Cc

u and Cc
w, select the interval having the

smallest right endpoint in Cj and add it to the set S initially empty. We claim
that S induces a stable of size at least 2bt/2c + 1. If two intervals of S are
intersecting, then they belong to the same colored clique, a contradiction. At
least bt/2c cliques are colored by the algorithm from Cc

u to Cc
v exclusive and

still at least bt/2c from Cc
v to Cc

w exclusive. Thus, S contains at least 2bt/2c+ 1
elements, which proves the claim. Since Ia ∈ Cc

u and Ia ∩ Id 6= ∅, Ia intersects
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every interval in S except maybe the one most to right which belongs to Cc
w.

This last interval is replaced in S by the interval Id; in effect, Id cannot intersect
the last but one interval of S (otherwise Id /∈ Cc

w, a contradiction). Finally,
since 2bt/2c + 1 ≥ t for all t ≥ 3, we obtain that at least t disjoint intervals
are overlapped by Ia, which is in contradiction with the fact that G is K1,t-free.
Therefore, the color class Cc induces well a K1,3-free interval graph, ie. a proper
interval graph by Roberts theorem (cf. [13, 6]), and the whole correctness of the
algorithm is established. ut

Remark. In Algorithm ColorCliques, the assignment of colors is done according
to the basic ordering {1, . . . , bt/2c}. The correctness holds by using any permu-
tation of the set {1, . . . , bt/2c, 1, . . . , bt/2c}, repeated as many time as necessary
to complete the assignment (the proof remains the same). Notably, this implies
that there exists at least (2t)!/2tt! non-isomorphic partitions of a K1,t-free in-
terval graph into proper interval graphs. Note that determining the minimum
value t for which G is K1,t-free can be done in O(n2) time by computing the
largest stable [7] contained in each interval of its representation I1, . . . , In.

Lemma 2. Any interval graph G = (V, E) admits a partition into less than
dlog3((n + 1)/2)e K1,5-free interval subgraphs. Moreover, this partition is com-
puted in linear time and space.

Before giving the proof of the lemma, we need to establish this useful claim.

Claim. Any interval graph G = (V,E) admits an open (resp. closed) interval
representation such that every interval has positive integer endpoints lower than
n (resp. 2n). Moreover, this representation is computed in linear time and space.

Proof. Let A = (aij) be the maximal cliques-versus-vertices incidence matrix
of G. A (0, 1)-matrix has the consecutive 1’s property for columns if its rows
can be permuted in such a way that the 1’s in each column occur consecutively.
A well-known characterization of interval graphs is that the matrix A has the
consecutive 1’s property for columns and no more than n rows (Fulkerson-Gross
1965, cf. [6]). Thereby, consider a representation of A with the 1’s consecutive
in each column and for each v ∈ V , set le(Iv) = min{i | aiv = 1} and re(Iv) =
max{i | aiv = 1}. Clearly, the open interval representation {Iv}v∈V is such that
every endpoint is in {1, . . . , n}. This interval representation is correct because
two intervals are intersecting if and only if their two corresponding vertices are
connected. Computing the matrix A with consecutive 1’s is done in O(n + m)
time and space [9]. Therefore, the complexity of the previous construction is
linear. Finally, a closed interval representation is obtained from the previous
open interval representation. Sort all the endpoints (left and right mixed) in the
ascendant order. For i = 1, . . . , 2n, assign to the ith endpoint the value i and
then redefine the n intervals as closed with their new endpoints in {1, . . . , 2n}.
Since the order on the endpoints is unchanged, the interval graph remains the
same. Moreover, sorting 2n integers in {1, . . . , n} is done in O(n) time using
O(n) space, which concludes the proof. ut
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Proof (of Lemma 2). According to the Claim, compute in linear time and space
an open interval representation I1, . . . , In of G with endpoints in {1, . . . , n}
and denote by ` the maximum length of an interval (` ≤ n − 1). Then, par-
tition the intervals according to their length into dlog3((` + 2)/2)e subsets as
follows: I1 contains the intervals of length {1, 2, 3, 4}, I2 the intervals of length
{5, 6, . . . , 16}, . . . , Ii the intervals of length {2.3i−1 − 1, . . . , 2.3i − 2}. We af-
firm that each subset Ii induces a K1,5-free interval graph. Indeed, the contrary
implies that one interval of Ii contains properly three disjoint intervals whose
sum of lengths is lower than 2.3i − 4, which is a contradiction (the minimum
sum of three intervals is 3(2.3i−1 − 1) = 2.3i − 3). Note that the proof re-
mains correct by starting with a closed interval representation with endpoints in
{1, . . . , 2n} and partitioning such that each set Ii contains the intervals of length
{4.3i−1 − 3, . . . , 4.3i − 4} for i = 1, . . . , dlog3((` + 4)/4)e (here ` ≤ 2n− 1). ut

Remark. In fact, we can prove more generally that any interval graph G = (V, E)
admits a partition into O(logt n) K1,t+2-free interval subgraphs for any integer
t ≥ 3.

Proposition 1. Any interval graph (resp. circular-arc graph) G = (V,E) ad-
mits a partition into less than 2dlog3((n + 1)/2)e (resp. 2dlog3((n + 1)/2)e+ 1)
proper interval subgraphs. Moreover, this partition is computed in linear time
and space.

Proof. The proof of the bound for interval graphs follows immediately the com-
bination of Lemmas 2 and 1 (with t = 5). For circular-arc graphs, compute first
a circular-arc representation of G in linear time and space [10]. Now, choose one
point p on the circle and compute the set of vertices V ∗ corresponding to the
arcs which contain p. By observing that V ∗ forms a clique and the subgraph
induced by V \V ∗ is an interval graph, we obtain the desired bound for circular-
arc graphs (any clique induces trivially a proper interval graph). ut

The first half of Theorem 1 is established through the previous proposition,
while the second is established via the next proposition.

Proposition 2. For infinitely many r, the complete r-partite graph Hr = (S1 ∪
· · · ∪ Sr, E) with |S1| = 1, . . . , |Sr| = 3r−1 admits no partition into less than
log3(2n + 1) proper interval subgraphs.

Proof. An interval representation of the graph Hr is built by defining recursively
the r stables S1, . . . , Sr as follows. The stable S1 consists of one open interval of
length 3r−1. For all i = 2, . . . , r, the stable Si is obtained by copying the stable
Si−1 and subdivising each interval of this one into three open intervals of equal
length (see Fig. 2 in Appendix A for an example of construction). The resulting
stables S1, . . . , Sr induce well a complete r-partite graph. Note that the number
of vertices of Hr is given by (∗) n =

∑r
i=1 3i−1 = (3r − 1)/2.

Since any stable induces trivially a proper interval graph, Hr admits a par-
tition into r proper interval subgraphs. Now, using induction, we show that
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any minimum partition of Hr into proper interval subgraphs has the cardinality
p(Hr) = r. First, one can easily verify that p(H1) = 1 or p(H2) = 2; then, the
induction basis is p(Hi−1) = i − 1 for i > 2. Now, suppose that p(Hi) < i and
consider a partition of Hi into i−1 sets I1, . . . , Ii−1 of proper intervals. Without
loss of generality, the single interval I∗ ∈ S1 belongs to I1. We claim that the
intervals of I1 \ I∗ induce at most two disjoint cliques. In effect, the contrary
implies the existence of an induced subgraph K1,3 in I1 (with I∗ as central ver-
tex and one interval in each disjoint clique as leaves). According to this claim,
at least one interval of S2 and all the intervals stemming from its subdivision
in S3, . . . , Si do not belong to I1. Clearly, such a set of intervals induces the
graph Hi−1 and by induction hypothesis, needs i−1 sets to be partitionned into
proper interval subgraphs. However, only the i−2 sets I2, . . . , Ii−1 are available
to realize that, which leads to a contradiction. This completes the induction by
obtaining that p(Hi) = i for i > 2. The equality (∗) is finally used to obtain
p(Hr) = log3(2n + 1). ut
Corollary 1. For every t ≥ 3, a K1,t-free interval graph with at most b(3t− 4)/2c
vertices exists which admits no partition into less than blog3(t− 1)c + 1 proper
interval subgraphs.

Proof. The graph Hr defined in Proposition 2 is clearly K1,t-free for t ∈ {3r−1 +
1, . . . , 3r}. By simple calculation, we deduce that Hr has at most b(3t− 4)/2c
vertices and admits no partition into less than blog3(t− 1)c+ 1 proper interval
subgraphs for t ∈ {3r−1 + 1, . . . , 3r}. ut

3 Applications to working schedules planning

A classical approximation. In this subsection, a classical algorithm is pre-
sented to approximate WSP with interval graphs. Here are two propositions,
partially established in [5], which are behind its proof.

Proposition 3. A minimum coloring of an interval graph G = (V, E) such that
the number s(G) of stables consisting of only one vertex is as small as possible
is computed in linear time and space.

Proposition 4. Let G = (V,E) be an interval graph and k an integer. If G
is colored such that each color is used at least k times, then G admits an op-
timal partition into dn/ke stables of size at most k. Moreover, this partition is
computed in linear time and space given the coloring in input.

Algorithm 2-ApproxWSP

input: an interval graph G = (V, E), an integer k;

output: a solution S to the WSP problem for G;

begin

compute a minimum coloring C = {S1, . . . , Sχ(G)} of G with s(G) minimum;

S ← ∅;
for each Si ∈ C do
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if |Si| < k then C ← C \ {Si}, S ← S ∪ {Si};
compute an optimal partition Sk of C into stables of size at most k;

S ← S ∪ Sk;

return S;

end;

Theorem 2. Algorithm 2-ApproxWSP achieves in linear time and space the
asymptotic worst-case ratio 2(k−1)/k for the criterion P . Moreover, this worst-
case ratio is tight.

Proof. Omitted here (see Appendix B for details). ut

Remark. A similar algorithm can be designed to approximate WSP for circular-
arc graphs with worst-case ratio 3: first determine in linear time a coloring using
less than 2 ω(G) colors and then use Proposition 4, which remains correct for
circular-arc graphs, to find a solution to WSP.

A greedy for proper interval graphs. Here a greedy algorithm is presented
which solves the WSP problem for proper interval graphs.

Algorithm GreedyProperWSP

input: a proper interval graph G = (V, E), an integer k;

output: a solution S to the WSP problem for G;

begin

compute a proper interval representation I1, . . . , In of G;

order I1, . . . , In according to the left endpoints;

compute ω(G) and χ(G, k) ← max{ω(G), dn/ke};
S1 ← · · · ← Sχ(G,k) ← ∅;
for i from 1 to n do

j ← (i− 1) mod χ(G, k) + 1, Sj ← Sj ∪ {Ii};
S ← {S1, . . . , Sχ(G,k)};
return S;

end;

Computing an ordered proper interval representation of G is done in O(n+m)
time and space [3] and ω(G) is computed in O(n) time [7]. Consequently, the
algorithm runs in linear time and space.

Lemma 3. The output solution S is (P |S)-optimal.

Proof. First, we claim that the output stables S1, . . . , Sχ(G,k) have a size at most
k. According to the algorithm, the stables have the same size (to within one unity
if n is not a multiple of k). Then, the existence of one stable of size strictly larger
than k implies that n > kχ(G, k), a contradiction. Additionally, this establishes
the (S)-optimality of S. Now, suppose that two intervals Iu, Iv with u < v are
intersecting in the stable Sj for any j ∈ {1, . . . , χ(G, k)}. By the algorithm, we



On partitioning interval and circular-arc graphs 9

have u = j + αχ(G, k) and v = j + βχ(G, k) with α < β. When the intervals
are proper, the right endpoints have the same order as the left endpoints. Then,
the intervals Iu, Iu+1, . . . , Iv−1, Iv include the portion [lv, ru] of the real line and
also induce a clique of size v− u + 1 = (β −α)χ(G, k) + 1 ≥ χ(G, k) + 1. Such a
clique implies that ω(G) > χ(G, k), which is a contradiction and the correctness
of the solution S is entirely proved. To conclude, S is (P |S)-optimal because
max{ω(G), dn/ke} is a lower bound for χ(G, k). ut
Lemma 4. The output solution S is (P |R)-optimal.

Proof (Sketch). The (P )-optimality of S is established by Lemma 2. Now, sup-
pose that the set S1, . . . , Sχ(G,k) is not (P |R)-optimal. Define S∗1 , . . . , S∗χ(G,k) to
be a (P |R)-optimal solution and g∗ the minimum gap between two consecutive
intervals of this solution. Remind that the intervals I1, . . . , In are ordered accord-
ing to the left endpoints and Iv,t denotes the interval of rank t in the stable S∗v .
We claim that for all i = 1, . . . , n, the interval Ii ∈ S∗u can be moved at the rank
t = b(i− 1)/χ(G, k)c+ 1 of the stable set S∗v with v = (i− 1) mod χ(G, k) + 1,
without decreasing g∗. After such an operation, the resulting set S∗1 , . . . , S∗χ(G,k)

coincide exactly with the solution S1, . . . , Sχ(G,k) of the greedy, which establishes
its (P |R)-optimality. The claim is proved by an inductive process whose initial
step is done as follows. If I1 ∈ S∗u with u 6= 1, exchange the entire set of intervals
of S∗u with the one of S∗1 . Clearly, g∗ is not deteriored (no gap is modified) and I1

is correctly placed. Now, the inductive step is proved; the intervals I1, . . . , Ii−1

are considered to be correctly placed. The interval Ii ∈ S∗u shall be moved to the
stable S∗v if u 6= v. Then, two cases are distinguished.

Case u < v (see Fig. 2 in Appendix A): S∗u = {Iu,1, . . . , Iu,t, Ii, . . . , Iu,j , . . .}
and S∗v = {Iv,1, . . . , Iv,t−1, Iv,t, . . . , Iv,j , . . .}. By induction hypothesis, we get
re(Iv,t−1) ≤ re(Iu,t) and le(Ii) ≤ le(Iv,t). Since re(Iu,t) < le(Ii), we obtain the
inequalities (i) re(Iv,t−1) ≤ re(Iu,t) < le(Ii) ≤ le(Iv,t) which allow us to redefine
S∗u = {Iu,1, . . . , Iu,t, Iv,t, . . . , Iv,j , . . .} and S∗v = {Iv,1, . . . , Iv,t−1, Ii, . . . , Iu,j , . . .}.
Two gaps are changed: le(Ii) − re(Iu,t) in S∗u becomes le(Iv,t) − re(Iu,t) and
le(Iv,t)− re(Iv,t−1) in S∗v becomes le(Ii)− re(Iv,t−1). According to (i), the new
gaps are larger than the minimum of the two old ones.

Case u > v (see Fig. 3 in Appendix A): S∗u = {Iu,1, . . . , Iu,t−1, Ii, . . . , Iu,j , . . .}
and S∗v = {Iv,1, . . . , Iv,t−1, Iv,t, . . . , Iv,j , . . .}. Here induction hypothesis provide
the inequalities (ii) re(Iv,t−1) ≤ re(Iu,t−1) < le(Ii) ≤ le(Iv,t) and we redefine
S∗u = {Iu,1, . . . , Iu,t−1, Iv,t, . . . , Iv,j , . . .} and S∗v = {Iv,1, . . . , Iv,t−1, Ii, . . . , Iu,j , . . .}.
According to (ii), the two new gaps in S∗u and S∗v are still larger than the mini-
mum of the two old ones.

The analysis of these two cases shows the correctness of the inductive step
and completes the proof of the claim. ut
Theorem 3. Algorithm GreedyProperWSP determines in linear time and space
(P |S, R)-optimal solutions to the problem WSP for proper interval graphs.
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The logarithmic approximation with sub-optima. According to the pre-
vious discussions, a new approximation algorithm is designed for WSP with
interval graphs.

Algorithm log-ApproxWSP

input: an interval graph G = (V, E), an integer k;

output: a solution S to the WSP problem for G;

begin

S ← ∅;
if G is a proper interval graph then S ← GreedyProperWSP(G, k);

else

partition G into B(n) proper interval subgraphs G1, . . . , GB(n);

for each subgraph Gi do S ← S ∪ GreedyProperWSP(G, k);

return S;

end;

Theorem 4. Algorithm log-ApproxWSP achieves in linear time and space the
absolute worst-case ratio min{k, B(n)} with B(n) = 2dlog3((n + 1)/2)e for the
criterion P and guarantees that (P |S, R)-optima are reached in B(n) subprob-
lems. Moreover, the worst-case ratio is asymptotically tight.

Proof. Correctness and complexity follow from Theorems 1 and 3, plus the fact
that recognizing a proper interval graph is done in linear time and space [3].
To complete the proof, the worst-case ratio is established. If G is a proper in-
terval graph then S is optimal. Otherwise, we have |S| =

∑B(n)
i=1 χ(Gi, k). By

using the inequalities
∑B(n)

i=1 χ(Gi, k) ≤ n ≤ k · χ(G, k) and
∑B(n)

i=1 χ(Gi, k) ≤∑B(n)
i=1 χ(G, k) ≤ B(n) · χ(G, k), we obtain the result.
Finally, an interval graph G is given which tights asymptotically the ratio

min{k,B(n)} with B(n) = 2blog3((n + 1)/2)c and k = B(n). The complete
proof is not detailed here; without loss of generality, we assume that n is a
multiple of B(n) and set N(n) = n/B(n) − 1. The interval graph is modeled
by the following set of open intervals. For i = 1, . . . , B(n)/2, take one interval
(1, 2.3i−1), one interval (1, 2.3i−1), N(n) intervals (2.3i−1, 4.3i−1−1) and N(n)
intervals (4.3i−1 − 1, 2.3i − 2) (see Fig. 1 above for an example of construction).
Note that the endpoints are well in {1, . . . , n} and G is not a proper interval
graph. In this case, one can verify that the approximation ratio of Algorithm
log-ApproxCIGk is

|S|
χ(G, k)

=
(B(n)/2)(2N(n) + 1)
2(B(n)/2) + N(n)− 1

= B(n) · n−B(n)/2
n + B2(n)− 2B(n)

−→
n→∞

B(n) = k.

ut

Remark. Algorithm log-ApproxCIGk produces (P |S,R)-optimal solutions when
G is a proper interval graph. Besides, in real-life situations [12], the minimum
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11 1716

N(24)

1 2 5 63 4

χ(G, k) = ω(G)

B(24)/2

Fig. 1. An example of construction which tights the worst-case ratio with n = 24
(k = B(24) = 4, N(24) = 5): χ(G, k) = 8 and |S| = 22.

value t for which G is K1,t-free is generally small (≤ 9). This allows direct
partitionings into proper interval subgraphs by Algorithm ColorCliques and also
the obtaining of constant worst-case ratios (≤ 4) for the criterion P . For example,
for tasks of 1, 2, 3 or 4 hours, we can obtain a 2-approximation and for tasks of
1, 2, . . . , 8 hours, a 3-approximation. Moreover, Algorithm log-ApproxWSP can
be easily adapted for circular-arc graphs. In this case, its “real-life” worst-case
ratio is nearly the same than the one obtained by the classical approach.

4 Conclusion

As a conclusion, we discuss some projections on the complexity of determining a
minimum partition of a interval graph into proper interval subgraphs. In effect,
answering to the mathematician has provided some hints for answering to the
computer scientist.

First, we know now that a minimum partition of a K1,5-free interval graph G
into proper interval subgraphs is computed in linear time and space: if G is not
a proper interval graph, then we can use Lemma 1 to partition G into 2 proper
interval graphs (recognizing proper interval graph is done in linear time and
space [3]). For K1,6-free interval graphs (and also for arbitrary interval graphs),
we conjecture that the problem is NP-complete.

Finding a polynomial-time approximation algorithm with constant worst-
case ratio for the problem seems to be difficult too. However, combining the
previous remark with Lemma 2 enables us to design a linear-time approxima-
tion algorithm, similar to Algorithm log-ApproxWSP, which achieves the worst-
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case ratio ln n for this problem: if G is not a proper interval graph, then we
can partition it into dlog3((n + 1)/2)e K1,5-free proper interval graphs (each of
then are partitionned in linear time into a minimum number of proper interval
subgraphs).
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Appendix A

S1

S2

S3

3 3 3

1 1 1 1 1 1 1 1 1

9

Fig. 2. The interval representation of G3.

Iu,1

Iv,1

S∗u

S∗v
Iv,t−1

Iu,t

Iv,t

Ii

Fig. 3. The case u < v.

Iv,1

Iu,1

S∗u

S∗v

Iu,t−1

Iv,t−1 Iv,t

Ii

Fig. 4. The case u > v.
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Appendix B

Proof (of Theorem 2). Correctness and complexity follow from Propositions 3
and 4. The worst-case ratio is established as follows. Denote by C2 the stables
of size {2, . . . , k − 1} in C and by Ck the stables of size at least k. The output
solution S has the cardinality

|S| = |C \ Ck|+
⌈∑

Si∈Ck
|Si|

k

⌉
(1)

If Ck = ∅ (χ(G, k) = χ(G)) or C\Ck = ∅ (χ(G, k) = dn/ke) then S is (P )-optimal.
Otherwise, the following (in)equalities hold:

∑

Si∈Ck

|Si|+
∑

Si∈C\Ck

|Si| = n (2)

|C \ Ck| ≤ χ(G)− 1 (3)

χ(G, k) ≥ max{χ(G),
⌈

n− s(G)
k

⌉
} (4)

(2) is trivial and (3) ensues from the previous discussion. To prove (4), let Si =
{Ij} be one of the s(G) stables of size one. Since ω(G) = χ(G), Ij belongs
to any maximum clique of G. Therefore, s(G) intervals cannot be matched in
G, which implies that χ(G, k) ≥ dn−s(G)

k e. This inequality and the direct one
χ(G, k) ≥ χ(G) yield (4). Now, by combining (2) and (4), we obtain

∑
Si∈Ck

|Si|
k

≤ χ(G, k) +
s(G)−∑

Si∈C\Ck
|Si|

k
(5)

By the fact that |Si| = 1 for every stable in C \ {C2 ∪ Ck} and (3), we have
s(G)−∑

Si∈C\Ck
|Si| = −∑

Si∈C2 |Si| ≤ −2(χ(G)− 1). Hence, (5) becomes
∑

Si∈Ck
|Si|

k
≤ χ(G, k)− 2(χ(G)− 1)

k
(6)

By integrating (3) and (6) into (1), we obtain finally |S| ≤ 2(k−1)
k · χ(G, k) + 2

k .

To conclude, the tightness of the worst-case ratio is shown. Set n = kq with
q ≥ 2 and define the interval graph G as the union of the clique Kq (of size q) and
n − q isolated vertices. The first step of Algorithm 2-ApproxWSP can be done
as follows: the vertices of Kq are uniformly distributed in q stables S1, . . . , Sq

where the isolated vertices are then placed in such a way that |S1| = kq−2(q−1)
and |S2| = · · · = |Sq| = 2 (note that χ(G) = n/k = q). In this case, the output
solution S has the size

|S| =
⌈

(k − 2)χ(G) + 2
k

⌉
+ χ(G)− 1 (7)

whereas an optimal one has simply the cardinality χ(G, k) = χ(G) = n/k.
Therefore, by substitutions in (7), we obtain |S| ≥ 2(k−1)

k · χ(G, k) − k−2
k and

the worst-case ratio 2(k − 1)/k is asymptotically reached. ut


