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Abstract

In this note, a constructive proof is given that the classes of proper interval graphs
and unit interval graphs coincide, a result originally established by Fred S. Roberts.
Additionally, the proof yields a linear-time and space algorithm to compute a unit
interval representation, given a proper interval graph as input.
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1 Introduction

An undirected graph G with vertex set V (G) and edge set E(G) is an interval
graph if to each vertex v ∈ V (G) a closed interval Iv = [lv, rv] of the real line
can be associated, such that two distinct vertices u, v ∈ V (G) are adjacent if
and only if Iu ∩ Iv 6= ∅. The family {Iv}v∈V (G) is an interval representation
of G. An undirected graph G is a proper interval graph if there is an interval
representation of G in which no interval properly contains another. In the
same way, an undirected graph G is a unit interval graph if there is an interval
representation of G in which all the intervals have the same length. For more
details about the world of interval graphs, the reader can consult [6,7].

In 1969, Roberts [14] proved that the classes of proper interval graphs and unit
interval graphs coincide. He showed notably that K1,3-free interval graphs are
unit interval graphs by using the Scott-Suppes characterization of semiorders
[15]. Then, the trivial implications “unit ⇒ proper ⇒ K1,3-free” for interval
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graphs enabled him to establish the whole result. Recently, Bogart and West
[1] gave a constructive proof of this result, where proper intervals are gradually
converted into unit intervals by means of successive contractions, dilations and
translations.

In this note, a new constructive proof of the Roberts characterization of proper
and unit interval graphs is presented. As in the Bogart-West proof [1], the unit
interval representation is produced from left to right by processing a represen-
tation of the graph. Here the proof is completely combinatorial, without need
for coordinate manipulation: the unit interval model is built directly from the
clique-vertex incidence matrix, which can be easily obtained from the proper
interval representation. The correctness of the construction relies crucially on
the fact that the clique-vertex incidence matrix of a proper interval graph has
the consecutive 1s property both for rows and for columns. We recall that a
(0, 1)-matrix has the consecutive 1s property for columns (resp. rows) if its
rows (resp. columns) can be permuted in such a way that the 1s in each column
(resp. row) occur consecutively. As a conclusion, some computational issues
are discussed.

For other characterizations of proper and unit interval graphs, the reader
is referred to the seminal works of Wegner [16] and Roberts [13]. All graph-
theoretical terms not defined here can be found in [7]. The numbers of vertices
and edges of the graph G are denoted respectively by n and m throughout the
paper.

2 The proof

Theorem 1 For an undirected graph G, the following statements are equiva-
lent:

(1) G is a proper interval graph,
(2) the clique-vertex incidence matrix of G has the consecutive 1s property

both for rows and for columns,
(3) G is a unit interval graph,
(4) G is a K1,3-free interval graph.

Proof . (1)⇒ (2). When no interval properly contains another, the left-endpoint
order and the right-endpoint order are the same. Let u and v be the first and
the last vertices of a maximal clique under this ordering. The interval Iu ex-
tends far enough to the right to reach the left endpoint of Iv, and the same
is true of every assigned interval that starts between the left endpoints of
Iu and Iv. Hence the clique consists precisely of these consecutive vertices in
the ordering (see Figure 1). Since the cliques occupy intervals of consecutive
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vertices in this ordering, and maximality of the cliques implies that no such
interval contains another, putting the cliques in increasing order of their first
vertices in the vertex order also establishes consecutivity of the set of cliques
containing any vertex.
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Fig. 1. A proper interval graph and its clique-vertex incidence matrix.

(2) ⇒ (3). From the consecutive 1s property for given orderings of the rows
and columns of the clique-vertex incidence matrix, the ith clique Ci consists of
consecutive vertices va(i), . . . , vb(i) from the vertex ordering, with each of 〈a〉
and 〈b〉 being a strictly increasing sequence (see Figure 1). Initially, represent
the vertices of C1 by b(1) pairwise intersecting distinct unit intervals whose left
endpoints are in the same order as the indexing v1, . . . , vb(1). For j > 1, having
assigned unit intervals to the vertices of

⋃
i<j Ci to represent the subgraph

they induce, we add distinct unit intervals for Cj − Cj−1 to extend this to a
unit interval representation of the subgraph induced by

⋃
i≤j Ci.

We specify Iv = [lv, rv] for v ∈ Cj−Cj−1 by putting lb(j−1)+1, . . . , lb(j), in order,
between ra(j)−1 and ra(j). Since va(j)−1 ∈ Cj−1, we have lb(j−1) < ra(j)−1, and
therefore the left endpoints occur in the desired order. Extend the resulting
intervals to unit length, setting rk = lk + 1 for b(j − 1) + 1 ≤ k ≤ b(j). All
these intervals end after rb(j−1). Since the members of Cj − Cj−1 are adjacent
to all of va(j), . . . , vb(j−1) and to no earlier vertices, we have a unit interval
representation of the desired subgraph.

Since the implications (3) ⇒ (4) ⇒ (1) are well known and easy to obtain (see
[1] for example), the proof is complete. 2

Note. Item (2) of Theorem 1 was previously stated in different language in
[6, p. 85] and can be also formulated as follows: there exists a linear ordering
v1, . . . , vn of V (G) such that for all i < j, vivj ∈ E(G) implies that all the
vertices between vi and vj in this ordering induce a clique. It is worth noting
that this last assertion is the natural strengthening for proper interval graphs
of an earlier characterization of interval graphs that appears in all of [8,10,12]:
the existence of an ordering v1, . . . , vn such that for all i < j, vivj ∈ E(G)
implies that vkvj ∈ E(G) whenever i < k < j.

3



3 Computational issues

Given a proper interval graph, many applications require knowing a unit inter-
val representation of the graph. Generally, linear-time and space recognition
algorithms for proper interval graphs produce only the linear ordering de-
scribed above for V (G) (see [2–5,9,11] for example). Here we discuss how to
compute a unit interval model efficiently, given a proper interval graph G and
the linear ordering on V (G).

Having the linear ordering on the vertices, the ordered set of maximal cliques
is easily computed in linear time and space. Then, the construction given
in the proof of the implication (2) ⇒ (3) of Theorem 1 yields a linear-time
and space algorithm to compute a unit interval representation. This is more
efficient than the Bogart-West construction [1], which computes a unit interval
model in O(n2) time from a proper interval representation.

However, these representations are not efficient in the sense that the endpoints
of the unit intervals are some arbitrary rationals which may have denominators
exponential in n. Only Corneil et al. [3] have shown that their breadth-first
search recognition algorithm could be used to construct a unit interval model
in which each endpoint is rational, with denominator n and numerator lower
than n2. Thus, it would be interesting to find a linear-time and space algorithm
which computes directly (that is, without the use of breadth-first search) an
efficient unit interval model, given a proper interval graph G and the linear
ordering on V (G) as input.
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