
Efficient algorithms for disjoint matchings
among intervals and related problems ?

Frédéric Gardi ??

Laboratoire d’Informatique Fondamentale,
Parc Scientifique et Technologique de Luminy,

Case 901 - 163, Avenue de Luminy,
13288 Marseille Cedex 9, France

Frederic.Gardi@lif.univ-mrs.fr

Abstract. In this note, the problem of determining disjoint matchings
in a set of intervals is investigated (two intervals can be matched if
they are disjoint). Such problems find applications in schedules plan-
ning. First, we propose a new incremental algorithm to compute maxi-
mum disjoint matchings among intervals. We show that this algorithm
runs in O(n) time if the intervals are given ordered in input. Addition-
ally, a shorter algorithm is given for the case where the intervals are
proper. Then, a NP-complete extension of this problem is considered:
the perfect disjoint multidimensional matching problem among intervals.
A sufficient condition is established for the existence of such a matching.
The proof of this result yields a linear-time algorithm to compute it in
this case. Besides, a greedy heuristic is shown to solve the problem in
linear time for proper intervals.

1 Introduction

A matching in an undirected graph G = (V,E) is a subset M ⊆ E of edges
such that no two edges are incident to a same vertex [1, 2]. The matching M is
called perfect if every vertex v ∈ V belongs to M, ie. if the cardinality of the
matching equals n/2. In this way, the maximum matching problem is to find the
matching of maximum cardinality in a graph. The perfect matching problem is
to determine the existence of a perfect matching in a graph (and compute it
if necessary); this problem is clearly reducible to the maximum matching prob-
lem. These problems have been intensively studied in algorithmic graph-theory
and combinatorics. They occur in numerous problems of operations research (for
example personnel assignment [3], scheduling [4]) and also holds an important
place in many practicle applications. The first polynomial algorithm to find a
maximum matching in a graph was given by J. Edmonds [5]. The fastest algo-
rithm is due to S. Micali and V.V. Vazirani [6]; its time complexity is O(

√
nm)

given a n-vertex, m-edge graph in input, but it is complex and not considered
practical.
? This paper is accepted for presentation and publication at the Fourth International

Conference on Discrete Mathematics and Theoretical Computer Science DMTCS’03.
?? The author works under contract with the firm Prologia–Groupe Air Liquide.

2 Frédéric Gardi

Definition of the problem. In this paper, a related problem is approached:
the maximum disjoint matching problem among intervals. Given a set I =
{I1, . . . , In} of n intervals of the real line, the problem is to find a maximum
matching in I such that two intervals can be matched if they are disjoint (non-
intersecting). An interval Ii is defined with its left endpoint le(Ii) (shortly li) and
its right endpoint re(Ii) (shortly ri). In graph-theoretic terms, such a problem is
equivalent to the maximum matching problem in complements of interval graphs.
An undirected graph G=(V,E) is an interval graph if to each vertex v ∈ V can
be associated an interval Iv = [lv, rv] of the real line, such that any pair of dis-
tinct vertices u, v are connected by an edge of E if and only if Iu ∩ Iv 6= ∅. The
family {Iv}v∈V is an interval representation of G. The edges of the complement
graph G = (V, F), called co-interval graph, are transitively orientable by setting
(u, v) ∈ −→

F if ru < lv. The orientation −→F of the edges induces a partial order
called interval order (we shall write Iu ≺ Iv if ru < lv). An interval graph G
is called proper interval graph if there is an interval representation of G such
that no interval contains properly another. Interval graphs are used as models
in many problems arising in diverse areas like scheduling, genetics, psychology,
sociology, archæology and others. The interested reader can consult [7, 2] for
surveys.

Previous works and results. At our acquaintance, two algorithms have been
proposed for maximum disjoint matching among intervals. The first one appears
in an unpublished manuscript of M.G. Andrews and D.T. Lee [8]. This algo-
rithm, based on plane sweeping, runs in O(n log n) time even if a sorted interval
representation is given in input. The second one is in a recent paper by M.G. An-
drews et al. [9]. They give a parallel recursive algorithm which requires O(log3n)
time using O(n/log2n) processors on the EREW PRAM (see [10] for an intro-
duction to the world of parallel algorithms). The serialization of their algorithm
provides an O(n log n) algorithm for computing maximum disjoint matchings
among intervals. Moreover, the authors claim that this one runs in linear time if
the input intervals are given sorted. However, this algorithm remains recursive
and complicated. In Section 3, we propose a much simpler incremental algorithm
running in O(n) time and space given the intervals sorted in input. In addition,
a shorter O(n) algorithm is designed for the case where the intervals are proper;
this one is quite different from the algorithm presented in [9]. According to these
results, we establish that the maximum matching problem for a n-vertex, m-edge
co-interval graph is solvable in O(n + m) time.

Extensions. A natural extension of the perfect matching problem is the perfect
multidimensional matching problem: given a n-vertex graph G and a natural
number k with n multiple of k, find a partition of G into n/k complete sets of
size k if there exists one. The problem for fixed k = 3, also known as Exact Cover
by Triangles, is NP-complete for general graphs [11]. In Section 4, a related
problem is considered for disjoint intervals: the perfect disjoint k-dimensional
matching problem among intervals, shortly k-PDMI. In this way, the perfect

Efficient algorithms for disjoint matchings 3

disjoint matching problem is denoted 2-PDMI. In graph-theoretic terms, the
k-PDMI problem is equivalent to the perfect k-dimensional matching problem
for co-interval graphs. H.L. Bodlaender and K. Jansen [12] have shown that k-
PDMI is NP-complete even for fixed k ≥ 4; the problem for k = 3 remains an
open question at our knowledge. First, we establish a sufficient condition for the
existence of a perfect disjoint k-dimensional matching among arbitrary intervals.
As a byproduct of the proof, we obtain a linear-time algorithm to compute the
matching in this case. Finally, a greedy heuristic is shown to solve the k-PDMI
problem for any integer k when the input intervals are proper.

Applications. Our interest to disjoint matching problems among intervals
comes from the following working schedules planning problem (WSP), which
has actually inspired this research. Let {Ti}i=1,...,n be a set of tasks having each
one a starting date li and an ending date ri. The regulation imposes that an
employee cannot execute more than k tasks (n is a multiple of k). Given that
the tasks allocated to an employee must not overlap, build a planning requiring
the minimum number of employees. Since the tasks are some intervals of the real
line, the WSP problem is equivalent to the k-PDMI problem. Thus, the result of
Section 3 provides an O(n log n) algorithm for WSP with k = 2. For k ≥ 3, some
easy (polynomial) cases are given in Section 4. Notably, the sufficient condition
finds applications in WSP of municipal bus drivers or air terminal personnels
(schedules planning problems solved by the firm Prologia–Groupe Air Liquide
[13]). Indeed, the movements of buses or planes generates some packets of consec-
utive tasks which induce independent sets of size larger than k (for reasonnable
values of k like 3, 4, 5).

2 Preliminaries

Before giving the first results, some notations and definitions which shall be
useful to the description and analysis of the matching algorithms are detailed.
All the terms defined here are essentially derived from graph-theory and can be
found in [1, 2].

Let I = {I1, . . . , In} be a set of n intervals. A complete set or clique is a
set of pairwise intersecting intervals. The clique number ω(I) is the cardinality
of the largest clique in I. On the opposite, an independent set or stable is a
set of pairwise disjoint intervals. A coloring of I associates to each interval one
color in such a way that two intersecting intervals have different colors. In fact, a
coloring of I corresponds to a partition of I into stables. The chromatic number
χ(I) is the cardinality of a partition of I into the least number of stables.

The structural properties of a set of intervals (or of its corresponding interval
graph) are mentionned in [1, 2]. One of the most significant is that for a set of
intervals I, the equality ω(I ′) = χ(I ′) holds for all I ′ ⊆ I (C. Berge 1960,
cf. [2]). Moreover, computing a maximum clique or a minimum coloring of I
can be done in linear time (F. Gavril 1976, cf. [2]; see also [14, 15]). The linear
orders induced by the endpoints are often used in the algorithmic of the sets of

4 Frédéric Gardi

intervals. In further sections, we denote by C the order defined by the ascendant
left endpoints (Iu C Iv if lu < lv or lu = lv and ru ≤ rv). In the same way,
we denote by B the order defined by the descendant right endpoints (Iu B Iv if
ru > rv or ru = rv and lu ≥ lv).

Another crucial notion appears in the analysis of one algorithm: the convexity
in bipartite graphs. A bipartite graph G = (X,Y,E) is Y -convex if there is an
ordering < on Y such that if ix, iz ∈ E with i ∈ X and x, z ∈ Y , then x < z
implies that iy ∈ E for all y ∈ Y with x < y < z. A convex bipartite graph
G is specified by giving the ordering < and for every i ∈ X, two values ai and
bi, respectively the smallest and largest elements in the interval of the (ordered)
vertices of Y connected to i. A nice result of F. Glover [16] establishes that the
maximum matching problem for convex bipartite graphs is solvable in linear
time. Successive improvements in the efficiency of Glover’s algorithm can be
found in [17–20].

3 Disjoint matchings among intervals

The matching algorithm. An incremental algorithm is presented to solve
the maximum disjoint matching problem among intervals in linear time. Before
describing the matching algorithm in details, we outline the main ideas behind its
correctness. The following result establishes that the maximum disjoint matching
problem in a set I of intervals can be reduced to the problem of minimizing the
number of stables having only one interval in a minimum partition of I into
stables.

Proposition 1. Let I = {I1, . . . , In} be a set of intervals and S = {S1, . . . , Sχ(I)}
be a minimum partition of I into stables such that the number s(I) of stables
consisting of only one interval is as small as possible. Then the size of a maxi-
mum disjoint matching in I is b(n− s(I))/2c.

The proof of this assertion is based on the two following lemmas.

Lemma 1. Let Si = {Iu} be one of the s(I) stables of S consisting of only one
interval. Then Iu belongs to any maximum clique of I.
Proof. Since ω(I) = χ(I), every stable of S has an interval in any maximum
clique of I. Thus, if Si = {Iu}, then Iu belongs necessarily to any maximum
clique of I. ut
Lemma 2. If every stable of S contains at least two intervals and n is an even
integer, then I admits a perfect disjoint matching.

Proof. The idea is to show that from two stables Si and Sj of odd size (at least
three), it is always possible to match two intervals, the one in Si and the other in
Sj , in order to redefine two new stables of even size. Let Ia, Ib ∈ Si and Ic, Id ∈ Sj

be such that Ia ≺ Ib and Ic ≺ Id. If Ia and Id are disjoint, then they are the
desired candidates to be matched. Otherwise, we claim that Ib and Ic make such

Efficient algorithms for disjoint matchings 5

a pair of intervals. Indeed, Ia intersecting Id implies that ld ≤ ra. Now, by using
the inequalities rc < ld and ra < lb, we have rc < lb and also Ib ∩ Ic = ∅. Finally,
from the remaining stables of even size, we can trivially match intervals of each
stable in pairs. By adding them to the intervals previously matched, we obtain
a perfect disjoint matching in I. ut

Then, Proposition 1 is proved as follows.

Proof (of Proposition 1). The first lemma imposes that s(I) intervals cannot be
matched in I and also that the size of a maximum disjoint matching in I is at
most b(n− s(I))/2c. Having removed these s(I) intervals, Lemma 2 allows us
to compute a perfect disjoint matching among the remaining n− s(I) intervals
(minus one if n− s(I) is odd). ut

Proposition 1 establishes that determining a maximum disjoint matching in
I is reducible to find a minimum partition of I into stables such that the number
s(I) of stables of size one is minimized. According to Lemma 1, this new problem
is solvable by computing a maximum disjoint matching between intervals of a
maximum clique C and intervals of I \C. Indeed, having this maximum match-
ing (denoted Mb), Algorithm CompleteStables detailed below minimizes s(I).
Then, a maximum disjoint matching in I is obtained by using the constructive
proofs of Proposition 1 and Lemma 2.

Algorithm CompleteStables;

input: S a minimum partition of I into stables,

Mb a maximum matching between a maximum clique C and I \ C;

output: S with a minimum number of stables of size one;

begin;

while there exists Si = {Iu} and {Iu, Iv} ∈ Mb with Iv ∈ Sj do

Sj ← Sj \ {Iv};
Si ← Si ∪ {Iv};
Mb ←Mb \ {Iu, Iv};

end;

The validity of Algorithm CompleteStables relies on Lemma 1 and the max-
imality of the matching Mb. Now we can provide a complete description of our
matching algorithm.

Algorithm MatchDisjIntervals;

input: I = {I1, . . . , In} a set of intervals;

output: M a maximum disjoint matching in I;

begin;

stage 1:

compute S = {S1, . . . , Sχ(I)} a minimum partition of I into stables;

if for all i = 1, . . . , χ(I), |Si| ≤ 2 then goto stage 3;

if for all i = 1, . . . , χ(I), |Si| ≥ 2 then goto stage 3;

stage 2:

6 Frédéric Gardi

compute a maximum clique C = {c1, . . . , cχ(I)} in I;

construct the bipartite graph Gb = (X, Y, E) such that:

- X = C,

- Y = I \ C,

- E = {(Ii, Ij) | Ii ∈ C, Ij ∈ I \ C with Ii ∩ Ij = ∅};
compute a maximum matching Mb in Gb;

CompleteStables(S,Mb);

stage 3:

for each Si ∈ S do

if |Si| = 1 then S ← S \ {Si};
compute a perfect disjoint matching M in S;

return M;

end;

Complexity of the matching algorithm. In this section, we analyse time
and space complexities of the matching algorithm according to the classical RAM
computational model [21]. We suppose to have in input the set I = {I1, . . . , In}
of intervals and in addition, the two orders C and B defined on I. Concretely,
the data structures used to represent the abstract objects manipulated by the
algorithm are defined as follows. I is an array of size n; the interval Ii, specified
with its endpoints li, ri, is the ith element of I. C and B are two arrays of size n
containing (the indices of) the intervals of I in the specified order. S is an array
of size χ(I); the jth element Sj of S is an array of size Sj .size. For every interval
Ii ∈ I, Ii.stable determines the index of the stable containing it. C is an array
of size χ(I); the jth element cj of C represents the interval which belongs to the
stable Sj in the clique C. Mb is an array of size χ(I); for j = 1, . . . , χ(I), Mb

j

contains the interval matched to cj ∈ C (or ∅ if it is not matched). M contains
the output pairs of matched intervals; this can be indifferently an array or a list.
Then, the time requires to access (in read or write mode) to one element of these
data structures is considered to be O(1).

Having C and B, a minimum coloring of n intervals is done in O(n) time
[14]; hence, stage 1 requires O(n) time. The complexity of stage 2 relies on the
following lemma.

Lemma 3. The bipartite graph Gb = (X, Y, E) is Y -convex.

Proof (Sketch). We recall that X = C, a maximum clique of I and Y = I \ C.
The set I \C is divided into two distinct parts: the set Ir of intervals which are
to the right of the clique C and the set Il of intervals which are to its left. By
ordering Ir according to the increasing left endpoints and Il according to the
increasing right endpoints, we obtain a linear ordering of the set Y . For each
cj ∈ C, set aj = min{i | cj ≺ Ii (Ii ∈ Ir)} and bj = max{i | Ii ≺ cj (Ii ∈ Il)}.
One can verify that for every i ∈ {aj , . . . , bj}, we have cj ∩ Ii = ∅ (see Fig. 1 in
Appendix). Consequently, the bipartite graph Gb is Y -convex. ut

Efficient algorithms for disjoint matchings 7

Since Gb is convex bipartite, a maximum matching Mb can be computed in
O(n) time by using the algorithm of G. Steiner and J.S. Yeomans [20]. Their
algorithm must have in input a construction of Gb such that it is described in
the preliminaries: the ordering on Y and for each cj ∈ X, the two values aj

and bj . Having C and B, order Y such that it was done in the proof of Lemma
3 requires O(n) time. Then, we can determine each aj by sweeping the set Ir

if the intervals of C are sorted according to the right endpoints; see Procedure
Determine ai below.

Procedure Determine aj ;

input: C = {c1, . . . , cχ(I)} sorted according to the right endpoints,

Ir = {Ir
1 , . . . , Ir

nr} sorted according to the left endpoints;

output: aj for each cj ∈ C;

begin;

i ← 1;

for all j = 1, . . . , χ(I) do

while i ≤ nr and le(Ir
i) ≤ re(cj) do

i ← i + 1;

aj ← i;

end;

The correctness of Procedure Determine aj is based on the fact that for each
cj ∈ C, we have re(cj−1) ≤ re(cj) and also aj−1 ≤ aj . Having the order B,
sorting C according to the right endpoints is done in O(n) time and in the worst
case, the loop runs in O(|C|+ |Ir|) time. Consequently, the execution of the pro-
cedure requires O(n) time. Clearly, the bj ’s can be determined by a symmetric
Procedure Determine bj among the set Il if the cj ’s are ordered according to
the left endpoints. Thus, the time complexity to compute each bj ’s is still O(n).
Finally, the construction and the maximum matching of Gb are computed in
O(n) time. To complete the analysis of stage 2, we propose an implementation
of Algorithm CompleteStables to run in linear time.

Procedure CompleteStables;

input: S the set of stables, Mb the maximum matching in Gb;

output: S with a minimum number of stables of size one;

begin;

Sone ← ∅;
for each Sj ∈ S do

if Sj .size = 1 then

Sone ← Sone ∪ {Sj};
while Sone 6= ∅ do

Sone ← Sone \ {Sj};
let Ii be the interval contained in Mb

j ;

if Ii 6= ∅ then

j′ ← Ii.stable;

8 Frédéric Gardi

Sj′ ← Sj′ \ {Ii}, Sj′ .size ← Sj′ .size− 1;

Sj ← Sj ∪ {Ii}, Sj .size ← Sj .size + 1;

if Sj′ .size = 1 then

Sone ← Sone ∪ {Sj′};
end;

To conclude, stage 3 is done in O(n) time too: having removed stables of size
one, the proof of Proposition 1 yields a simple linear-time algorithm to compute a
perfect matching in I. The space used all along the three stages never exceeding
O(n), the following result is established.

Theorem 1. Algorithm MatchDisjIntervals finds a maximum disjoint matching
among n intervals in O(n) time and space given in input the set of intervals and
the orders C and B.

Corollary 1. The maximum matching problem for a n-vertex, m-edge co-interval
graph is solvable in O(n + m) time.

Proof. Computing an ordered interval representation from a co-interval graph is
done in O(n + m) time [22]. Then, Theorem 1 allows to conclude. ut

Note. The time complexity remains in O(n+m) if the more direct O(m) Glover’s
algorithm [16] is used to compute a maximum matching in Gb at stage 2.

A short algorithm for proper intervals. In [9] a simpler algorithm is pre-
sented for the maximum matching problem among proper intervals. This algo-
rithm makes use of a red-blue matching algorithm [23] to compute the size of a
maximum matching. Here we propose another short algorithm based on a new
characterization of the size of a maximum matching.

Lemma 4. Let I be a set of n proper intervals. Then the size ϑ(I) of a maxi-
mum disjoint matching in I is min(n− ω(I), bn/2c).
Proof. Let S be a minimum partition of I into stables. We recall that the car-
dinality of S equals ω(I). Then, three cases are possible.

Case 1: every stable of S has a size at least two. This implies that bn/2c ≤
n−ω(I) (n even ⇒ n ≥ 2ω(I), n odd ⇒ n > 2ω(I)). Then, according to Lemma
2, we have ϑ(I) = bn/2c.

Case 2: every stable of S has a size at most two. Clearly, this implies that
n ≤ 2ω(I) and also bn/2c ≥ n − ω(I). In this case, ϑ(I) equals the number of
stables of size two, which is n− ω(I).

Case 3: S contains stables of size one and stables of size at least three. We
claim that in this case we can bring us back to one of the two previous situations
by completing small stables with intervals from large stables. To prove this claim,
let us consider two stables Si and Sj respectively of size one and three. Since the
intervals are proper, the interval of Si cannot intersect the three intervals of Sj .
Therefore, there exists at least one interval which can be removed in Sj to be

Efficient algorithms for disjoint matchings 9

added to Si. By repeating this exchange process while there are in S a stable of
size one and another of size at least three, the claim is proved. Thereby, Cases
1 and 2 allows us to conclude. ut

Now the next lemma characterizes a maximum matching in a set of proper
intervals.

Lemma 5. Let I = {I1, . . . , In} be a set of proper intervals ordered according
to the left endpoints and ϑ(I) the size of a maximum disjoint matching in I.
Then M = {(Ii, In−ϑ(I)+i) | i = 1, . . . , ϑ(I)} is a maximum disjoint matching
in I.

Proof. Suppose that two matched intervals (Ii, In−ϑ(I)+i) of M are intersecting
(ie. ln−ϑ(I)+i < ri). When the intervals are proper, the right endpoints have the
same order as the left endpoints. Consequently, the intervals Ii, Ii+1, . . . , In−ϑ(I)+i

overlap the portion [ln−ϑ(I)+i, ri] of the real line and also induce a clique of car-
dinality n − ϑ(I) + 1. Hence, the size of a maximum disjoint matching cannot
be larger than ϑ(I)− 1, which is a contradiction. ut

According to Lemmas 4 and 5, one can design the following algorithm for
maximum disjoint matching among proper intervals.

Algorithm MatchDisjProperIntervals;

input: I = {I1, . . . , In} a set of ordered proper intervals;

output: M a maximum disjoint matching in I;

begin;

compute ω(I);

ϑ(I) ← min (n− ω(I), bn/2c);
M← ∅;
for all i = 1, . . . , ϑ(I) do

M←M∪ (Ii, In−ϑ(I)+i);

return M;

end;

Since the calculation of ω(I) is done in O(n) time [14], the algorithm runs
in O(n) time too.

Theorem 2. Algorithm MatchDisjProperIntervals determines a maximum dis-
joint matching among n proper intervals in O(n) time and space given the set
of intervals ordered in input.

4 Perfect disjoint multidimensional matchings

A sufficient condition for arbitrary intervals. The following proposition
gives us a sufficient condition to obtain a perfect disjoint k-dimensional matching
among arbitrary intervals. The proposition generalizes Lemma 2.

10 Frédéric Gardi

Proposition 2. Let I = {I1, . . . , In} be a set of intervals and k an integer with
n multiple of k. If there exists a coloring of I such that each color is used at least
k times, then I admits a perfect disjoint k-dimensional matching. Moreover, this
matching is computed in O(n) time and space given the set of ordered intervals
and the coloring in input.

The proof relies on the next lemma.

Lemma 6. Let S1, . . . , St be t stables of I satisfying the following conditions:

. t ∈ {1, . . . , k},

. for i = 1, . . . , t, |Si| = k + ri with ri ∈ {1, . . . , k − 1},

. the sum of the ri’s for i = 1, . . . , t equals k.

Then there exists a stable S∗ of size k such that for all i = 1, . . . , t, ri in-
tervals of S∗ belong to Si. In other words, S1, . . . , St admits a perfect disjoint
k-dimensional matching of cardinality t + 1.

Proof. An algorithm having the stables S1, . . . , St in input is proposed for the
construction of S∗. The intervals of each stable are supposed to be ordered ac-
cording to the relation ≺. The rank of an interval in a stable is its number in
this order. In this way, Ii,j denote the interval of rank j in the stable i. At each
step, the algorithm selects one interval among the t stables, removes it from its
stable and includes it in S∗. After k steps, the stable S∗ is returned in output.
The selection of the interval I∗j of rank j in S∗ is done as follows: choose the
interval having the smallest right endpoint among the intervals of rank j, which
belong to stables of size still larger than k. The complete algorithm is detailed
below.

Algorithm k-MatchDisjIntervals;

input: k an integer,

S1, . . . , St a set of stables satisfying the conditions of Lemma 6;

output: the stable S∗ = {I∗1 , . . . , I∗k};
begin;

S∗ ← ∅;
for all j = 1, . . . , k do

F ← ∅;
for all i = 1, . . . , t do

if |Si| > k then

F ← F ∪ {Ii,j};
let I∗j be the interval having the smallest right endpoint in F ;

remove I∗j from its stable and add it to S∗;
return S∗;

end;

To conclude, the correctness of the algorithm is established. At each step
of the algorithm, an interval is selected (every input stable has more than k

Efficient algorithms for disjoint matchings 11

intervals). Therefore, S∗ contains exactly k intervals in output. Now, we claim
that for all j = 1, . . . , k − 1, we have I∗j ≺ I∗j+1, ie. re(I∗j) < le(I∗j+1). Indeed,
assume that I∗j ≡ Iu,j and I∗j+1 ≡ Iv,j+1 with u, v ∈ {1, . . . , t}. If u = v, the
claim is proved. Otherwise, suppose that I∗j and I∗j+1 are intersecting. We have
le(Iv,j+1) ≤ re(Iu,j) and also re(Iv,j) < re(Iu,j). Now, Iv,j+1 ∈ F at step j + 1
implies necessarily Iv,j ∈ F at step j. Then, Iu,j ≡ I∗j is not the interval having
the smallest right endpoint in F at step j, which is a contradiction. ut

Then, the proposition is proved as follows.

Proof (of Proposition 2). Let S = {S1, . . . , Sq} be a partition of I into stables
such that for all i = 1, . . . , q, we have |Si| ≥ k. Define |Si| = αik + βi to be the
size of the stable Si with αi a non-zero integer and βi ∈ {0, . . . , k − 1}. First,
from each stable Si are extracted αi−1 stables of size k, plus one if βi = 0. After
this preprocessing, at most 2k−1 intervals remain in each stable. Then, Lemma
6 is applied with t = k to extract stables of size k while at least k stables of size
strictly greater than k exist in the partition S. When it remains less than k such
stables in S, a last application of Lemma 6 allows to conclude (n is a multiple
of k). The execution of Algorithm k-MatchDisjIntervals requiring k O(t) time,
the method described here runs in k O(n/k) = O(n) time (given the intervals
ordered according to ≺ in each input stable). ut
Corollary 2. Let I be a set of n intervals and k an integer with n multiple of
k. If I admits a perfect disjoint k-dimensional matching, then I admits a perfect
disjoint k′-dimensional matching for any integer k′ < k with n multiple of k′.

A linear-time algorithm for proper intervals. In this last part, the dis-
joint multidimensional matching problem is proved to be linear-time solvable for
proper intervals. At the same time, a strong sufficient condition is established for
the existence of disjoint matchings among proper intervals. The result extends
Theorem 2.

Algorithm k-MatchDisjProperIntervals;

input: I = {I1, . . . , In} a set of ordered proper intervals,

k an integer with n multiple of k;

output: M a perfect k-dimensional disjoint matching in I;

begin;

compute ω(I);

M← ∅;
if n/k ≥ ω(I) then

for all i = 1, . . . , n/k do

M←M∪ (Ii+j(n/k) | j = 0, . . . , k − 1);

return M;

end;

Theorem 3. Algorithm k-MatchDisjProperIntervals solves the disjoint k-dimensional
matching problem among n proper intervals in O(n) time and space given the
set of intervals ordered in input.

12 Frédéric Gardi

Proof. The result could be established by extending the proof of Lemma 4
and using Proposition 2, but here we give a more direct one. Immediately, if
n/k < ω(I), no perfect disjoint k-dimensional matching exists in I. Otherwise,
we claim that the algorithm finds such a matching. Indeed, suppose that two
intervals Ii+j(n/k) and Ii+(j+1)(n/k) (of the k-dimensional matching i) are inter-
secting for any j ∈ {0, . . . , k − 2}. Since the intervals are proper, the intervals
Ii+j(n/k), Ii+j(n/k)+1, . . . , Ii+(j+1)(n/k) overlap the portion [li+(j+1)(n/k), ri+j(n/k)]
of the real line and also induce a clique of size n/k + 1. Such a clique imposing
that ω(I) > n/k, we obtain a contradiction. ut
Corollary 3. Let I = {I1, . . . , In} be a set of proper intervals and k an integer
with n multiple of k. Then I admits a perfect k-dimensional disjoint matching
if and only if n/k ≥ ω(I).

Acknowledgements. We thank Professors Michel Van Caneghem and Victor
Chepoi for their advice and the firm Prologia–Groupe Air Liquide for its grant.
We are also grateful to the two anonymous referees for their appreciations.

References

1. C. Berge (1985). Graphs. Elsevier Science Publishers B.V., Amsterdam, 2nd edi-
tion.

2. M.C. Golumbic (1980). Algorithmic Graph Theory and Perfect Graphs. Computer
Science and Applied Mathematics. Academic Press, New-York.

3. P. Ramanan, J. Deogun and C. Liu (1984). A personnel assignment problem.
Journal of Algorithms 5, 132-144.

4. G. Steiner and J.S. Yeomans (1993). Level schedules for mixed-model, just-in-time
processes. Management Science 39(6), 728–735.

5. J. Edmonds (1965). Maximum matching and a polyedron with 0,1 vertices. Journal
of Research of N.B.S. B 69, 125–130.

6. S. Micali and V.V. Vazirani (1980). An O(
√

V E) algorithm for finding maximum
matching in general graphs. In Proc. 21st Annual Symposium on Foundations of
Computer Science, pages 17–27.

7. F.S. Roberts (1978). Graph Theory and its Applications to Problems of Society.
SIAM, Philadelphia, PA.

8. M.G. Andrews and D.T. Lee (1992). An optimal algorithm for matching in interval
graphs. manuscript.

9. M.G. Andrews, M.J. Atallah, D.Z. Chen and D.T. Lee (2000). Parallel algorithms
for maximum matching in complements of interval graphs and related problems.
Algorithmica 26, 263–289.

10. J. Jàjà (1992). An Introduction to Parallel Algorithms. Addison-Wesley, Reading,
MA.

11. M.R. Garey and J.S. Johnson (1979). Computer and Intractability: A Guide to
NP-Completeness. W.H. Freeman.

12. H.L. Bodlaender and K. Jansen (1995). Restrictions of graph partition problems.
Part I. Theoretical Computer Science 148, 93–109.

13. Bamboo–Planification by Prologia–Groupe Air Liquide.
http://prologianet.univ-mrs.fr/bamboo/bamboo planification.html

Efficient algorithms for disjoint matchings 13

14. U.I. Gupta, D.T. Lee and J.Y.-T. Leung (1982). Efficient algorithms for interval
and circular-arc graphs. Networks 12, 459–467.

15. S. Olariu (1991). An optimal greedy heuristic to color interval graphs. Information
Processing Letters 37, 21–25.

16. F. Glover (1967). Maximum matchings in a convex bipartite graph. Naval Research
Logistics Quartely 4(3), 313–316.

17. W. Lipski, Jr. and F.P. Preparata (1981). Efficient algorithms for finding maximum
matchings in convex bipartite graphs and related problems. Acta Informatica 15,
329–346.

18. G. Gallo (1984). An O(n log n) algorithm for the convex bipartite matching prob-
lem. Operation Research Letters 3(1), 31–34.

19. H.N. Gabow and R.E. Tarjan (1985). An linear-time algorithm for the special set
union. Journal of Computer and System Sciences 30, 209–221.

20. G. Steiner and J.S. Yeomans (1996). A linear time algorithm for maximum match-
ings in convex, bipartite graphs. Computers and Mathematics with Applications
31(12), 91–96.

21. S.A. Cook and R.A. Reckhow (1973). Time bounded random access machines.
Journal of Computer and System Sciences 7, 354–375.

22. M. Habib, R. McConnel, C. Paul and L. Viennot (2000). Lex-BSF and partition
refinement, with applications to transitive orientation, interval graph recognition
and consecutive ones testing. Theoretical Computer Science 234, 59–84.

23. S.K. Kim (1989). Optimal parallel algorithms on sorted intervals. In Proc. 27th
Annual Allerton Conference on Communication, Control and Computing, pages
766–775. Monticello, IL.

Appendix

cj ∈ C

Iaj
Ibj

le(cj)

re(cj)

li

ri

Ir

I l

Fig. 1. The proof of Lemma 3

