
Car sequencing is NP-hard: a short proof

Abstract

In this note, a new proof is given that the car sequencing problem is NP-

hard. Established from the hamiltonian path problem, the reduction is direct

while closing gaps remaining in the previous NP-hardness results. Since car

sequencing is studied in many operational research courses, this result and

its proof are particularly interesting for teaching purposes.
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Introduction

The car sequencing problem consists in scheduling cars along an assembly

line composed of different posts where are installed the equipments and op-

tions relative to each vehicle (radio, sun-roof, air-conditioning, etc). In order

to smooth the workload at these posts, the cars for which setting options

needs some heavy operations are spaced out in the sequence. In other words,

the goal is to minimize the density of cars in the sequence which require much

work to assemble. This need of spacing out cars is formalized by defining a

ratio constraint for each option. For example, for an option with ratio 3/7,

one shall not find more than 3 cars affected by the option in any subsequence

consisting of 7 consecutive cars. Then, the objective is to find a sequence of

cars satisfying all ratio constraints.

Given its economic issues, car sequencing was heavily studied these last
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twenty years. In 2005, the French Operations Research Society, jointly with

the car manufacturer Renault, posed a real-life car sequencing problem as

subject of an international OR competition, leading to a large body of re-

search. Estellon et al (2006, 2008) have provided state-of-the-art practical

solution approaches to car sequencing in this context. The reader is referred

to Solnon et al (2008) for a survey on the topic.

In its simplest form, the car sequencing (CS) problem can be formally

defined as follows. An instance is composed of n cars and m options. Each

option ok represents a ratio constraint pk/qk with pk < qk ≤ n. Each car ci is

defined as a bit string of length m such that ci,k = 1 if car i has option k, and

0 otherwise. A solution is given as a sequence (that is, a permutation) of the

n cars such that for each option ok, every subsequence of qk cars contains at

most pk cars requiring ok. Another way to define the car sequencing problem

(CS’) is to consider in input the cars grouped according to the different

configurations induced by the options. In this case, the input is composed of

n1, . . . , nk cars from k configurations, instead of the arbitrary n cars.

Gent (1998) proved that CS is NP-complete, by reduction from the Hamil-

tonian Path (HP) problem. However, his reduction is rather complex and

his paper remains unpublished. Kis (2004) established that CS’ (and thus

CS) is strongly NP-hard, from the Exact Cover by 3-Sets problem. In ad-

dition, Kis observed that the compactness of CS’ instances has surprising

consequences in terms of computational complexity. First, contrarily to CS,

car sequences do not necessarily induce polynomial certificates in CS’. Then,

he devised a pseudo-polynomial algorithm (by dynamic programming) for

solving CS’ when the number of configurations is fixed and denominators of
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ratio constraints are not too large.

In this note, a refined NP-hardness result is provided through a straight-

forward parsimonious reduction from the Hamiltonian Path problem. All

terms related to computational complexity which are not defined here can

be found in Garey and Johnson (1979) and Welsh and Gale (2001).

The complexity result

Kis (2004) shows that car sequencing is NP-hard, even if all options have

ratios with denominator at most 4. Indeed, his reduction uses options with

ratios 1/4 or 2/3 only. Here the following result is established directly.

Theorem 1. CS is NP-complete, even if all options have ratios 1/2.

Proof. The reduction is performed from Hamiltonian Path, well-known to

be NP-complete (Garey and Johnson, 1979). An instance of HP is composed

of an undirected graph G(V,E) with n vertices. A solution is given as a path

in G visiting each vertex exactly once. Now, an instance of CS is built as

follows. For each vertex i, a car ci is defined. For each pair (i, j) of non

adjacent vertices, an option oi,j with ratio 1/2 is defined and assigned to cars

ci and cj. Clearly, such a transformation is done in polynomial time. Then,

two cars do not share an option, and thus can be sequenced consecutively,

if and only if their corresponding vertices in the graph are adjacent. Conse-

quently, a one-to-one mapping exists between all hamiltonian paths and all

admissible car sequences.

Remark 1. In this reduction, the size of the CS instance is not linear in

the size of the HP instance, since the number of options is quadratic in n for
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sparse graphs. It is possible to obtain only n options by slightly modifying

the construction as follows. For each vertex i, a car ci is defined having the

option oi with ratio 1/2. Now, for each pair (i, j) of non adjacent vertices, the

car ci has option oj and the car cj has option oi. In this case, the cars/options

matrix corresponds exactly to the one’s complement of the adjacency matrix

of G.

Remark 2. These two reductions can be easily adapted to show directly

that CS’ is NP-hard, even if all options have ratios 1/2 (each option induces

actually one configuration). Since HP is #P-hard (Welsh and Gale, 2001,

p. 118), the one-to-one mapping between hamiltonian paths and admissible

car sequences implies that CS and CS’ are #P-hard too.

As conclusion, we mention the following issue which remains open: what

is the complexity of the car sequencing problem when the number of options

(or of configurations) is fixed and some denominators of ratio constraints are

large?
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