
SLS 2009

High-performance local search for task scheduling

with human resource allocation

Frédéric GARDI

Bouygues e-lab, Paris
fgardi@bouygues.com

Bertrand ESTELLON Karim NOUIOUA

Laboratoire d’Informatique Fondamentale,

Faculté des Sciences de Luminy, Marseille

{ estellon, nouioua }@lif.univ-mrs.fr

03/09/2009, Brussels

1/17

SLS 2009

Paradigm: to improve iteratively a solution by exploring a
neighborhood of this solution.

Neighborhoods are induced by (local) transformations
applied to the solution, that is, by modifying some decision
variables in the solution: local search = neighborhood
exploration

Today, we observe a tendency to confuse local search and
metaheuristics, leading to neglect two major ingredients in
the design of local search algorithms:

- the definition of moves

- the algorithmic machinery (for evaluating moves)

Local search

2/17

SLS 2009

In combinatorial optimization, the definition (or goal) of high
performance could be : providing solutions of better quality (for
larger instances) with shorter running times (and more generally,
using less resources).

 Why ?

Because this is the main demand of people having some needs in
optimization (engineers, analysts, operational teams, etc.).

A challenge is to meet this growing demand for performance
facing to physical constraints (hardware), economical constraints
(budget), ecological constraints (green IT), etc.

3/17

High performance

SLS 2009

Another confusion : high performance is not synonym of parallel
computing. A reference on this subject:

B.M.E. Moret, D.A. Bader, T. Warnow (2002). High-performance algorithm
engineering for computational phylogenetics. Journal of Supercomputing
22(1), pp. 99-111.

Before parallelization issues, the performance must be sequential.
Before hardware issues, the performance must be algorithmic.

A mean (our credo!): experimental algorithmics (or algorithm
engineering) mixing foundations of computer science (complexity
theory) and practical aspects of implementation (software
engineering).

4/17

High performance

SLS 2009

A methodology was derived from our experiences for designing
and engineering high-performance local-search algorithms. We do
not claim that the recipe is new.

The methodology (and the resulting software) is composed of
three layers:

a) search strategy & (meta)heuristics

b) moves & neighborhoods

c) algorithms & implementation

We claim that the performance of a local-search heuristic depends
equally on the careful treatment of each layer. But we observe that
the working time spent to treat each layer follows the rule:

a : 10 % b : 30 % c : 60 %

Methodology

5/17

SLS 2009

These 3 layers cover the two fundamental aspects of local search :

- definition of the search space (density + connectivity)

- exploration of the search space

6/17

Methodology

SLS 2009

ROADEF 2007 Challenge: task scheduling with human resource
allocation (real-life problem from France Telecom)

n interventions, a set of available technicians each day, d skill
domains, l skill levels in each domain.

Each intervention requires a number of technicians with level at
least l in each domain d. Each technician has a level l in each
domain d.

Interventions can be assigned to a set of technicians one day if:

- the number of technicians in each level l and domain d is greater
than the one required by each intervention (sequential execution)

- the sum of durations of interventions is lower than H

Application

7/17

SLS 2009

Extensions :

- precedence between interventions (sparse)

- budget B allowing to subcontract interventions

Objective : minimizing the makespan of the schedule

Scale : 800 interventions, 150 technicians, 40 domains and 7
levels of skill, resulting schedules with 60 days

Resources : running time limited to 20 minutes per instance on a
standard computer (AMD Athlon64 1.8 GHz, 1 Mo L2, 1 Go
RAM)

Application

8/17

SLS 2009

Search strategy

Non admissible solutions (red points)

 = bridging points for local search :

() reachable by local moves

() increase diversification

() must converge toward admissible

solutions (black points)

9/17

1) Define the search space (surrogate solution space)

 → increase the density of the search space

Relaxing business constraints and/or using surrogate cost function
allows to increase the search space’s density (and connectivity)

SLS 2009

Example on France Telecom's problem:

 skill constraints on technician teams are relaxed

For each intervention, one violation is counted if:

- the team of technicians to which it is assigned does not have
enough skills to perform it

- its ending time is greater than CURRENT_DEADLINE

Objective : minimizing the number of violations (by local search)

When no violation remains, an improving admissible solution is
found. The process is iterated by setting

 CURRENT_DEADLINE CURRENT_DEADLINE 1

10/17

Search strategy

SLS 2009

2) Define how local search walks into the search space

 → increase the connectivity of the search space

If 1) treated carefully, prefer simplicity (at least initially):

- first-improvement descent

- stochastic selection of moves (stochastic ≠ uniform)

The pool of moves ensure the search space’s connectivity:

more moves → greater connectivity → larger diversification

Generic moves → diversification

Specific moves → intensification (acceleration of convergence)

Reminder: density + connectivity → convergence

11/17

Search strategy & Moves

SLS 2009

On France Telecom’s problem

Pool of 31 moves derived from 8 basic transformations:

- move technician to another team in a day

- swap technicians of two different teams in a day

- move intervention in another day (“inter days”)

- move intervention in another team of the day (“intra day”)

- move intervention in the team schedule (“intra team”)

- swap two interventions “inter days”

- swap two interventions “intra day”

- swap two interventions “intra team”

The stochastic selection of moves follows a specific distribution
determined experimentally (by hand).

Moves

12/17

SLS 2009

Main derivations: for choosing technicians and interventions to
which a transformation is applied

- randomly

- randomly among days with (interventions inducing) violations

- randomly among teams with violations

Specific derivations: for dealing with extensions of the problem

- precedence: swap interventions A and B if start(A) ≤ start(B)
and B has more successors than A in the DAG

- subcontracting: swap a scheduled intervention causing violations
with a subcontracted intervention

Moves

13/17

SLS 2009

Algorithms

Local search is an incomplete search technique: its performance
depends strongly on the number of solutions explored within the
time limit.

algorithms = engine of local search

3 crucial routines for each move : evaluate, commit, rollback

1) incremental algorithms relying on special data structures,
exploiting invariants of moves → (high-level) efficiency

2) careful implementation (cache-aware programming, CPU &
RAM profiling) → (low-level) efficiency

3) programming with assertions, data structures checked at each
iteration in debug mode (checkers) → correctness & reliability

14/17

SLS 2009

1 0 0 1

3 1 0 2

3 2 0 2

3 3 0 2

0 0 0 1

3 1 0 2

3 2 0 3

3 3 0 3

France Telecom: evaluating skills provided by technicians versus

skills required by interventions assigned to a team.

Skill matrix (i,j) with positive entries, non increasing in columns.

Problem: decide if T(i,j) ≥ I(i,j) for all (i,j). Worst-case: O(dl) time.

if T(i,j) < I(i,j), then T(i,j’) ≤ T(i,j) < I(i,j) = I(i,j’) with j’ < j

15/17

Algorithms

T(i,j) I(i,j)

l = 0

l = 3

SLS 2009

1 0 0 1

3 1 0 2

3 2 0 2

3 3 0 2

0 0 0 1

3 1 0 2

3 2 0 3

3 3 0 3

10 6 0 7 9 6 0 9 23 24

Stop evaluation earlier: 3 tests in cascade O(1) → O(d) → O(dl)

experimental algorithmics = practical efficiency and not only

theoretical worst case

16/17

Algorithms

SLS 2009

Challenge results

- ≈ 120 man-days

- 12000 lines of ISO C99 code

- runs with less than 10 Mo of RAM

- 1.5 million moves/sec, 2 billion moves over 20 min

- acceptance rate of moves between 5 % and 50 %

- average gain of 30 % compared to FT solutions

- best solutions of the challenge for 13 instances over 30

- far from 7.3 % of the best solution on average

- 2nd Senior over 35 participating teams from 10 countries

 1st : Hurkens (Netherlands)

 3rd : Cordeau, Laporte, Pasin, Ropke (Canada)

17/17

