
TRANSPORTATION SCIENCE
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0041-1655 |eissn 1526-5447 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c⃝ 0000 INFORMS

Randomized local search
for real-life inventory routing

Thierry Benoist, Frédéric Gardi, Antoine Jeanjean
Bouygues e-lab, 40 rue Washington, 75008 Paris,

{tbenoist,fgardi,ajeanjean}@bouygues.com

Bertrand Estellon
Laboratoire d’Informatique Fondamentale - CNRS UMR 6166,
Faculté des Sciences de Luminy - Université Aix-Marseille II,
163 avenue de Luminy - case 901, 13288 Marseille cedex 9,

bertrand.estellon@lif.univ-mrs.fr

In this paper, a new practical solution approach based on randomized local search is presented for tackling
a real-life inventory routing problem. Inventory routing refers to the optimization of transportation costs for
the replenishment of customers’ inventories: based on consumption forecasts, the vendor organizes delivery
routes. Our model takes into account pickups, time windows, drivers’ safety regulations, orders and many
other real-life constraints. This generalization of the vehicle routing problem was often handled in two stages
in the past: inventory first, routing second. On the contrary, a characteristic of our local-search approach is
the absence of decomposition, made possible by a fast volume assignment algorithm. Moreover, thanks to
a large variety of randomized neighborhoods, a simple first-improvement descent is used instead of tuned,
complex metaheuristics. The problem being solved every day with a rolling horizon, the short-term objective
needs to be carefully designed in order to ensure long-term savings. To achieve this goal we propose a
new surrogate objective function for the short-term model, based on long-term lower bounds. An extensive
computational study shows that our solution is effective, efficient and robust, providing long-term savings
exceeding 20% on average compared to solutions built by expert planners or even a classical urgency-based
constructive algorithm. Confirming the promised gains in operations, the resulting decision support system
is progressively deployed worldwide.

Key words : logistics; real-life inventory routing; decision support system; randomized local search;
high-performance algorithm engineering.

History :

Inventory routing problems (IRP) integrates two classical logistic problems over a planning

horizon: inventory management and vehicle routing. The main difference with vehicle routing is

that the vendor monitors the customers’ inventories, deciding when and how much each inventory

should be replenished by routing vehicles. Based on consumption forecasts for each customer, a

solution is a set of routes visiting customers and delivering a certain amount of product at each of

these stops. In addition to routing constraints, stockouts must be avoided, which means that the

quantity of product stored at each customer should stay above a certain safety level. The economic

function to minimize is the costs of the routes.

In this paper, a real-life IRP is addressed. Having outlined the main features of the IRP model

(Section 1), the contributions of the paper are emphasized with respect to prior works (Section 2).

Based on lower bounds on delivery costs, a new surrogate objective is proposed for modeling the

short-term problem, improving significantly the long-term optimization (Section 3). Then, an orig-

inal local-search approach is presented which tackles frontally this short-term problem (Section 5),

relying on a large variety of randomized neighborhoods and a fast volume assignment algorithm.

An extensive computational study (Section 6) demonstrates that our solution provides long-term

savings exceeding 20% on average compared to solutions built by expert planners or even to a

classical urgency-based constructive algorithm (Section 4).

1

Benoist et al.: Real-life inventory routing
2 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

1. The inventory routing model
For the sake of concision and readability, the problem is not completely and formally described,
but its main characteristics are outlined. Comparisons with prior works will be developed in the
next section.

A product is produced by the vendor’s plants and consumed at customers’ sites. Both plants
and customers store the product in tanks. Reliable forecasts of consumption (resp. production)
at customers (resp. plants) are available over a discretized short-term horizon. The inventory of
each customer must be replenished by tank trucks so as to never fall under its safety level. The
transportation is performed by vehicles formed by coupling three kinds of heterogenous resources:
drivers, tractors, trailers. Each resource is assigned to a depot. Thus, the size of an instance
of the problem is essentially defined by the number of points (depots, customers, plants), the
number of resources (drivers, tractors, trailers), and the number of time steps for which are defined
consumptions/productions over the horizon. Now, a solution to the problem is given as a set of
shifts. A shift is defined by: the depot (from which it starts and ends), the vehicle (driver, tractor,
trailer), its starting date, its ending date, and the chronological-ordered list of performed operations.
Then, an operation is defined by the site where the operation takes place, the quantity delivered or
loaded, its starting date (also called arrival date) and its ending date (also called departure date).
Thus, the inventory levels for customers, plants and trailers can be computed from the quantities
delivered or loaded during the shifts.

checking

delivery layover

departure

arrival

c0

c1

b0

b0

p0
c1

b0

departure

loading

c0

c2

p0

c2

waiting

arrival

traveling

end

start

checking checking checking

Figure 1 Two views of the shift s= (b0, c0, p0, c1, c2, b0): the route and the schedule. Some of the notions described
as real-life aspects are illustrated on the figure.

The constraints on shifts are called routing constraints. A shift must start from the depot which
are located the resources composing the vehicle and must end by returning to this one. Some
triplets of resources are not admissible (due to driving licences, for example). A resource can be
used only during one of its availability time windows. The working and driving times of drivers
are limited; as soon as a maximum duration is reached, the driver must take a layover with a
minimum duration (legal rules and regulations). In addition, the duration of a shift cannot exceed
a maximal value depending on the driver. Checking operations must be performed at the start and
at the end of any shift, as well as before and after any layover. Traveling distance and time are
given for each pair of points (depots, plants and customers). Instead of using a single time matrix,
several matrices are defined depending on the average speeds of the different kinds of tractors.
The resulting matrices are not necessarily symmetric, but are assumed to satisfy the triangular
inequality. The sites visited along the tour must be accessible to the resources composing the vehicle
(special skills or certifications are required to work on certain sites). The date of pickup/delivery
must be contained in one of the opening time windows of the visited site. Here the duration of an
operation does not depend on the delivered or loaded quantity; this duration is fixed in function

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 3

of the site where the operation is performed, the resulting approximation being covered by the
uncertainties lying on the traveled times. Two graphical views of a shift are illustrated on Figure 1.

Inventory constraints can be modeled as a flow network. Two kinds of inventories have to be
managed: tanks of sites (customers and plants) and trailers. In any case, the quantity in a storage
must remain between zero and its capacity. For a customer c, the tank level l(c,h) at each time
step h is equal to the tank level at the previous time step h−1, minus the forecasted consumption
F (c,h) over h, plus all the deliveries performed over h. The quantities delivered to customers must
be positive (loading is forbidden at customers). Hence, the inventory dynamics at any time step h
for customer c can be formally written as{

l(c,h) = l(c,h− 1)−F (c,h)+
∑

o∈O(c,h)

q(o)

if l(c,h)< 0, then l(c,h) = 0

with q(o) the quantity delivered during an operation o and O(c,h) the set of operations performed
at site c whose starting date belongs to time step h. Forbidding stockouts corresponds to force
l(c,h) to be greater than the safety level for each customer c and each time step h. The same
formula applies for plants, if the forecasted productions and the loading quantities have negative
values (delivery is forbidden at plants). However, for plants, when the above formula yields a
quantity larger than the tank capacity, the result is limited to the capacity. These overflows are not
penalized, because production aspects are assumed not to be managed in this model. For trailers,
the inventory dynamics is much simpler since operations performed by a trailer cannot overlap.
Hence the quantity in a trailer is not defined for each time step but after each of its operations.
Starting at an initial level, this quantity is merely increased by loadings and decreased by deliveries.

This “forecasting-based resupply” model must be combined in practice with the classical “order-
based resupply”: the possibility for customers of issuing an order (to deal with an unexpected
increase of their consumption, for example), specifying the desired quantity and the time window
in which the delivery must be done. Some customers may use this possibility occasionally, while
others choose to work in pure order-based resupply mode (without forecasting). But for the sake
of concision, order management will not be deeply discussed in this paper.

The objective of the vendor over the long term (more than 90 days) is to minimize the total cost
of shifts. The cost of a shift depends on the working duration (driver costs) and on the traveled
distance (tractor and trailer costs), but also on the number of deliveries, loadings, and layovers
appearing during the shift. This cost is usually divided by the total delivered quantity in order to
increase the readability of this economic indicator. The cost per ton ratio (or miles per ton when
costs are approximated by distances) is widely used in the industry and in the academic literature.
This ratio LR= SC/DQ is called logistic ratio throughout the paper, with SC the total shift cost
and DQ the total delivered quantity over the considered horizon (with the exception that if DQ = 0,
then LR = 0). On the other hand, reliable forecasts (for both plants and customers) are available
over a 15-days horizon. Thus, shifts are operationally planned day after day with a short-term
rolling horizon of 15 days. It means that each day, a distribution plan is deterministically built for
the next 15 days, but only shifts starting at the current day are fixed.

Large-scale instances have to be tackled within short computing times. A geographic area can
contain up to 1500 customers, 50 sources, 50 depots, 100 drivers, 100 tractors, 100 trailers. All
temporal data have to be managed in continuous time, except for consumptions of customers (resp.
productions of plants) which are discretely represented. Concretely, all dates and durations are
expressed in minutes (on the whole, the short-term planning horizon counts 21600 minutes); the
inventory dynamics for plants and customers are computed with time steps of one hour (because
forecasts are computed with this accuracy). The execution time for computing a short-term plan-
ning is limited to 5 minutes on standard computers.

Benoist et al.: Real-life inventory routing
4 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

2. Prior works and contributions
Since the seminal work of Bell et al. (1983) on a real-life inventory routing problem, a vast literature
has emerged on the subject. In particular, a long series of papers was published by Campbell et al.
(1998, 2002), Campbell and Savelsbergh (2004a), Savelsbergh and Song (2007a,b, 2008), motivated
by a real-life problematic encountered in the industry. However, in many companies, inventory
routing is still done by hand or supported by basic softwares, with rules like: serve “emergency”
customers (that is, customers whose inventory is near to run out) using as many “full deliveries”
as possible (that is, deliveries with quantity equal to the trailer capacity or, if not possible, to the
customer tank capacity). For more references, the interested reader is referred to the recent papers
by Savelsbergh and Song (2007a, 2008), which give a comprehensive survey of the research done
on the IRP over the past 25 years.

Below are emphasized the three contributions of the paper with respect to prior works:
• a very realistic model in terms of constraints, costs, and scale;
• a new surrogate objective function for dealing with the rolling horizon process;
• a pure and direct local-search heuristic, based on a fast volume assignment algorithm.

2.1. A real-life model
The problem addressed here is very close to the one treated by operational planners. To our
acquaintance, such broad inventory routing problems have been rarely addressed in the operations
research literature. Indeed, many real-life features described here have not been treated in past
studies, allowing a more global and accurate optimization of the replenishment logistics. Some of
these features have been reported as important practical issues in the survey by Campbell et al.
(1998). First, our inventory routing model integrates both kinds of resupply: forecasting-based and
order-based. Besides, several subproblems related to the scheduling of shifts and the allocation of
resources to shifts become computationally hard in the present case. Another interesting feature,
enabling to go further in logistic optimization while making the problem harder, is what is called
“continuous moves” in Savelsbergh and Song (2007a, 2008) or “satellite facilities” in Bard et al.
(1998). The vehicles can arbitrarily load or deliver some product along their routes, and loadings
can be done at multiple plants. Moreover, when a driver reaches its working or driving time limit, he
can continue his route after a layover. This allows to design shifts spanning several days and covering
huge geographic areas. Then, the expected forecasts of consumption for customers (resp. production
for plants) are given for each hour on a 15-days horizon, allowing nonlinear consumptions (resp.
productions). Here forecasts are assumed to be reliable, inducing a deterministic optimization
problem (contingencies on the customer consumption are considered to be covered by the defined
safety level). Customers (resp. plants) may have different consumption (resp. production) profile,
asking several deliveries (resp. pickups) per day or only one per month. Finally, a popular and
sensible economic function, used by Campbell et al. (1998, 2002), Savelsbergh and Song (2007a,
2008), is to maximize the volume per mile over the long term, obtained by dividing the total
quantity delivered to all customers by the total distance traveled. Instead of the sole traveled
distance, we take into account the actual cost of the routes thanks to a precise modeling of the cost
of each shift in function of its traveled distance, its traveled time, its number of loadings, its number
of deliveries, and its number of rests. The resulting generalized objective is the minimization of the
cost per unit of delivered product, called logistic ratio.

Note that one feature generally addressed in the IRP literature (e.g. Campbell et al. 1998, 2002,
Savelsbergh and Song 2007a, 2008) is not included in our IRP model: loading or delivery duration
depending on the quantity. Indeed, fixed-duration loadings and deliveries depending on sites were
judged sufficient to approximate reality (full loadings/deliveries are performed in almost half an
hour), because several other approximations making this detail negligible are done about temporal
aspects due to real-life uncertainties (in particular about traveled times). Nevertheless, our solution
could be adapted to manage this feature without significantly affecting its performance.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 5

2.2. A new surrogate objective function
While the IRP goal is to optimize distribution costs over the long term, forecasts are usually avail-
able for a short horizon and continuously updated. Therefore the problem is usually solved in a
rolling horizon framework. Here a short term planning is build for 15 days and only shifts starting
the first day are fixed. The next day, a new planning is built including one more day in the horizon.
As mentioned by Campbell et al. (1998, 2002), the first difficulty arising in modeling IRP is to
define appropriate short-term objectives leading to good long-term solutions. In fact, a direct min-
imization of costs would lead to deferring as many deliveries as possible to later planning periods.
This rolling horizon issue has been studied in Dror and Ball (1987), where incentives are introduced
for the amount delivered, based on an estimation of the long term savings incurred by anticipated
deliveries. Our contribution on this topic is to introduce a new surrogate objective for short-term
optimization (here done over a 15-days horizon) ensuring long-term improvements. This surrogate
objective, which shall be detailed later in the paper, is based on lower bounds for the logistic
ratio (this extends observations made by Savelsbergh and Song (2007b) on performance measure-
ment). Computational experiments with real-life data show that significant gains are obtained in
the long run by optimizing this short-term surrogate objective, compared to a direct short-term
minimization of the logistic ratio.

2.3. A direct local-search approach
To our knowledge, the sole papers describing practical solutions for similar problems are the ones
described by Campbell et al. (2002), Campbell and Savelsbergh (2004a), Savelsbergh and Song
(2007a, 2008). Before presenting our solution approach, we outline the ones implemented by Camp-
bell et al. (2002), Campbell and Savelsbergh (2004a) for solving the single-plant IRP, and by
Savelsbergh and Song (2007a, 2008) for solving the multiple-plant IRP. The solution approaches
described by Campbell et al. (2002) and Campbell and Savelsbergh (2004a) are the same in essence;
because integrating additional realistic constraints, the single-plant IRP addressed by Campbell
and Savelsbergh (2004a) is more complex than the one by Campbell et al. (2002). The method
developed by the authors is deterministic and proceeds in two phases. In the first phase, it is
decided which customers are visited in the next few days, and a target amount of product to be
delivered to these customers is set. In the second phase, vehicle routes are determined taking into
account vehicle capacities, customer delivery windows, drivers restrictions, etc. The first phase is
solved heuristically by integer programming techniques, whereas the second phase is solved with
specific insertion heuristics (Campbell and Savelsbergh 2004c), as done for vehicle routing problems
with time windows by Solomon (1987).

In Savelsbergh and Song (2007a, 2008), the authors develop two approaches for solving the
multiple-plant IRP. Many realistic features taken into account in Campbell and Savelsbergh (2004a)
are relaxed in the model addressed by the authors. In particular, simple resources are considered
(that is, a vehicle is reduced to a trailer) allowing an integer multi-commodity flow formulation of
the problem. The first approach (Savelsbergh and Song 2007a) is based on an insertion heuristic
which delivers customers ordered by urgency (that is, the time remaining before the first stockout)
while minimizing stockout and transportation costs. This approach is declined into three greedy
algorithms: a basic one where insertions are only performed at the end of shifts, a enhanced
one where insertions can be performed at any point in the shift after the last pickup, and a
randomized enhanced one where the latter is embedded into a greedy randomized adaptive search
procedure (Feo and Resende 1995). Then, a postprocessing is performed using linear programming
for maximizing delivered quantities on the resulting shifts (in order to maximize the volume per
mile). The second approach (Savelsbergh and Song 2008) consists in solving heuristically the integer
multi-commodity flow program (by using customized integer programming techniques). Since such
computational requirements are too large for a practical use, the authors use the integer program

Benoist et al.: Real-life inventory routing
6 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

for exploring large neighborhoods in a local-search scheme. It consists in re-optimizing the schedules
of two vehicles in the planning by solving the integer program with the other schedules fixed. In
this way, all pairs of vehicles are re-optimized iteratively.

For the resolution of the short-term planning problem with the surrogate objective, a local-
search heuristic is presented in this paper, whose design and engineering follows the “three-layers”
methodology introduced by Estellon et al. (2009) and successfully implemented for solving other
large-scale combinatorial problems arising in business and industry (Estellon et al. 2006, 2008,
2009). The originality of our local-search approach is to be pure (no metaheuristic, no hybridiza-
tion) and direct (no decomposition of the problem: the 15-days planning is directly optimized). The
absence of decomposition is a strength of our approach. Indeed, most previous works on the subject
proceed in two stages: inventory management first and vehicle routing second. On the contrary,
our local-search heuristic handles the whole problem and performs transformations on the solution
impacting both deliveries (dates and volumes) and routes (paths, resources, etc.). The performance
of our approach relies on: 1) the use of a large variety of randomized small neighborhoods, allowing
to reach high-quality local optima without the help of metaheuristics; 2) the engineering of fast
evaluation routines, in particular an incremental approximation algorithm for volume assignment
which is a thousand times faster than exact flow algorithms. Note that a local-search approach is
outlined by Lau et al. (2002) for solving an IRP with time windows, but their solution remains
based on a decomposition of the problem (distribution and then routing). For more details on
local-search techniques and their applications in combinatorial optimization, the reader is referred
to the book edited by Aarts and Lenstra (1997).

The experiments reported in the related works Bell et al. (1983), Campbell et al. (2002), Camp-
bell and Savelsbergh (2004a), Savelsbergh and Song (2007a, 2008) show savings up to 10% over the
long run (with computation times of several minutes), compared to solutions obtained by a greedy
algorithm based on the rules of thumb commonly used in practice (like the one cited in introduction
of this section). The extensive computational study presented at the end of the paper demonstrates
that our solution is effective, efficient and robust, providing long-term savings exceeding 20% on
average, compared to solutions computed by expert planners or even to a classical urgency-based
constructive heuristic. An abstract of this work was previously published by Benoist et al. (2009).

3. The short-term surrogate objective
One of the main difficulties encountered in IRP is to take short-term decisions ensuring long-
term improvements. This is the case with most problems handled with a rolling horizon approach.
In other words, a surrogate short-term objective needs to be defined in order to optimize the
economic function over the long term. Obviously, focusing on the minimization of total costs would
lead to delivering only customers for which a shortage is forecasted over the short-term horizon.
Optimizing the logistic ratio allows better anticipations but does not lead necessarily to long-term
optimal solutions. For example, assume that a faraway customer has no stockout over the next
days. Scheduling a delivery for this customer would probably increase the logistic ratio, and will
be discarded. But such short-term decisions may be highly suboptimal in the long run, especially if
some near-optimal deliveries are possible over these next days due to the availability of resources.
This lack of anticipation motivates the proposal of a new surrogate objective function that can
be summarized into the following rule: “never put off until tomorrow what you can do optimally
today”. This short-term goal shall be to minimize the global extra cost per unit of delivered
product, compared to the optimal logistic ratio LR∗. Denote by LR∗(c) the optimal logistic ratio
for delivering the customer c and then by

SC ∗(s) =
∑

customer c
delivered over s

LR∗(c)× q(c)

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 7

the optimal cost of the shift s according to the quantities delivered at each customer over s. Then,
the surrogate logistic ratio LR′ is defined as:

LR′ =

∑
s(SC (s)−SC ∗(s))

DQ

Then, it requires to tackle another problem: the computation of lower bounds of LR∗(c) for each
customer c. These lower bounds are computed as follows. A trip is defined as a subpart of a tour
(see Figure 2): it is a sequence of visits starting at a plant (or a depot), delivering one or more
customers, and finishing at a plant (or a depot). In other words, a trip in a shift corresponds to a
time interval whose left endpoint (resp. right endpoint) is the starting date from the plant or the
depot (resp. the starting date from the plant or the depot visited in the next trip). Then, the cost
of a shift can be decomposed according to its trips, in such a way that the cost of a trip corresponds
to the costs (distance, time, deliveries, loadings, layovers) accumulated over the corresponding time
interval. Besides, the cost of each trip can be dispatched to visited customers proportionally to
the delivered quantities. For each customer c, a lower bound LRmin(c) is obtained by dividing the
cost of the cheapest trip visiting c by the maximum capacity of a trailer able to perform this trip.
Since the distance and time matrices satisfy the triangular inequality, the cheapest trip consists in
visiting solely the customer c. Consequently, LRmin(c) is computed in O((B +P)2) time for each
customer c, with B the number of depots and P the number of plants.

delivery loadingloading delivery basebase delivery delivery

trip t2trip t0 trip t1

delivery

Figure 2 The trips of a shift.

These lower bounds LRmin(c) are used in the definition of the surrogate objective function LR′.
A global lower bound of the logistic ratio LR∗ can be derived from these lower bounds, but this
topic is outside of the scope of the present paper.

4. Urgency-based constructive heuristic
In order to quickly build an initial solution, a constructive heuristic was designed, based on a clas-
sical urgency approach. The goal of this algorithm is to avoid stockouts. Basically, it repeatedly
picks the next stockout and tries to create a new delivery for this customer. The deadline of a
demand (stockout) is defined as the latest start of a shift that would reach the customer on time
to perform the desired delivery, taking travel time and opening hours into account.

Algorithm Greedy;
Input: an instance I of IRP;
Output: a solution S to IRP (namely a set of shifts);
Begin;

S←∅;
initialize the set D of demands with stockouts for all customers;
while D is not empty do
select the demand d∈D with earliest deadline;
create a cheapest delivery o to satisfy d;
if o exists then
insert o into a shift in S (possibly creating a new shift);
compute the next stockout after the delivery o and update the deadline of d accordingly;

Benoist et al.: Real-life inventory routing
8 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

else remove d from D;
return S;

End;

At each step of the algorithm, the newly created delivery can be either appended at the end
of an existing shift or included in a new shift. Our goal is to perform the insertion minimizing
the increase of the surrogate logistic ratio. In the first case, the extension of a shift can be made
impossible due to accessibility or resources constraints (for example, the resulting duration of this
shift may extend the maximum allowed amplitude). For each existing shift, this feasibility is tested
in constant time. However, inserting a loading operation can be required for refilling the trailer
before performing the delivery, in which case all plants are tested. Therefore, this stage runs in
O(|S|P) time, with |S| the number of shifts returned by the greedy algorithm and P the number
of plants. In the second case, all depots and all possible triplets of resources are considered. Here
again, all plants are considered if a loading is needed. The worst-case time complexity of this
enumeration is in O(BRP), with B the number of depots and R the number of triplets of resources
(drivers, tractors, trailers). But in effect, this running time can be reduced by cutting strongly the
search tree, in particular once a feasible shift has been found.

The choice of the delivery date impacts the delivered volume since the available space in the
customer tank increases with time. On the other hand, packing the shifts to the left tends to
optimize resources utilization. Our tradeoff consists in favoring large deliveries as a first criterion,
breaking ties by preferring early dates. In other words, we prefer to deliver later (but before the
stockout date) if it allows increasing the delivered quantity, but between two dates allowing to
empty the trailer we choose the earliest one. Each time a delivery is created, the inventory levels
for this customer are updated and its next stockout date is computed.

Never backtracking on decisions taken on dates and quantities, this urgency-based insertion
heuristic runs fast in practice. Even if the local-search heuristic described in the next section is
able to start from an empty set of shifts, the use of the initial solution obtained by this construc-
tive algorithm yields a significant speed-up in the convergence toward high-quality solutions (in
particular, when finding a solution without stockout is hard).

5. High-performance local search
In this section, the main ingredients of the local-search heuristic are detailed. The exposition follows
the “three-layers” methodology by Estellon et al. (2009) for designing local-search algorithms:
heuristic & search strategy, transformations, incremental evaluation machinery.

5.1. Heuristic & search strategy
The heuristic is divided into two optimization phases: first we reach a feasible solution, then
we optimize the cost of this solution. Indeed, when finding a feasible solution is not trivial, a
common modeling practice is to relax some constraints by introducing appropriate penalties. Such
relaxations are especially needed in the context of heuristic solution approaches. In the present
case, we relax the no-stockout constraints as detailed below. In the first phase, the only objective
is the maximization of our feasibility measure, regardless of costs. As soon as a feasible solution is
found, we switch to the second phase (optimization of the economic function) during which only
feasible solutions are visited.

During the feasibility stage, the no-stockout constraints are removed and a penalty SO is intro-
duced, counting for each customer the number of time steps during which the above inequality is
violated (quantity in tank is smaller than the safety level). In other words, the feasibility stage
consists in minimizing the number of violated no-stockout constraints. This stage is necessary for
finding feasible solutions, since the constructive heuristic described in the previous section may

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 9

not fix all stockouts. It also ensures that the software always returns a (possibly infeasible) solu-
tion. Indeed, presenting an infeasible solution to the user allows him to analyze the causes for this
infeasibility. For instance, if stockouts are avoided for all customers but one, he can focus on this
customer and detect that no available trailer is allowed to visit this site.

Below is outlined the skeleton of the whole heuristic, which is a simple first-improvement ran-
domized descent. We insist on the fact that no metaheuristic is used, thus avoiding the need for
many tuning parameters.

Algorithm Randomized-Descent;
Input: an instance I of IRP;
Output: a solution S to IRP;
Begin;

S← Greedy(I);
Stockout optimization:

while SO > 0 and time limit is not reached do
choose randomly a transformation T in the pool TSO ;
evaluate the result (SOnew) of the application of T to S;
if SOnew ≤ SO then commit T ; else rollback T ;

Logistic ratio optimization:
while time limit is not reached do
choose randomly a transformation T in the pool TLR;
evaluate the result (SOnew, LR

′
new) of the application of T to S;

if SOnew = 0 and LR′
new ≤ LR′ then commit T ; else rollback T ;

return S;
End;

Thus, the heuristic is divided into two optimization phases: the first one consists in minimizing the
number of stockout time steps (SO) regardless of costs, and the second one consists in optimizing
the objective related to logistic ratio (LR′) while preserving SO = 0. Accepting solutions with equal
cost at each optimization phase is crucial for ensuring the diversification of the search and thus
the convergence toward high-quality solutions. For each optimization phase, the transformation to
apply is chosen randomly with equal probability over all transformations of the pool (improvements
being marginal, further tunings with non-uniform distribution have been abandoned to facilitate
maintenance and evolutions). Note that in our implementation, the sign of LR′

new−LR′ is obtained
by evaluating the expression

SC −SC ∗

DQ
− SC new−SC ∗

new

DQnew

or equivalently DQnew(SC −SC ∗)−DQ(SC new−SC ∗
new) which avoids imprecisions due to floating-

point arithmetic when the expression tends toward zero.
In presence of orders, the above heuristic needs to be enriched with a preliminary phase devoted

to orders (as an explicit request of a customer, order satisfaction have the highest priority). Hence,
our objective becomes in lexicographic order: order satisfaction, stockout satisfaction and finally,
logistic ratio minimization. Our measure of order satisfaction is not directly the count of satisfied
orders. Introducing for each order an intermediate state called “unsatisfied” between the states
“missed” and “satisfied” was found to facilitate the convergence of the local search. An order is
unsatisfied if an operation exists satisfying the time window of the order, but not its quantity. In
this way, an order is satisfied (resp. missed) when both the dates and the quantity are respected
by at least one operation (resp. by no operation). A transformation is accepted when it increases
the number of satisfied orders or when it leaves this number unchanged, without increasing the
number of unsatisfied orders. Together with specialized transformations focused on orders, this
phase allows to handle problems where “forecasting-based resupply” and “order-based resupply”

Benoist et al.: Real-life inventory routing
10 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

are mixed. For the sake of concision, this variant of the problem will not be evoked in the remaining
of this paper nor in experimental results.

5.2. The transformations
The transformations are classified into two categories: the first ones work on operations, the second
ones work on shifts. Having introduced the different transformations, their main instantiation shall
be described. An instantiation corresponds to the way the objects modified by the transformation
are selected. While defining orthogonal transformations (that is, transformations inducing disjoint
neighborhoods) enables to diversify the search and then reach better-quality solutions, specializing
transformations according to specificities of the problem (because random choices are not the most
appropriate in all situations) enables to intensify the search and then speed up the convergence of
the heuristic.

The transformations on operations are grouped into the following types: insertion, deletion,
ejection, move, swap (see Figure 3). Two kinds of insertion are defined: the first kind consists in
inserting an operation (pickup or delivery) into an existing shift; the second consists in inserting a
pickup followed by a delivery into a shift (the inserted plant is chosen to be one of the nearest from
the inserted customer). The deletion consists in deleting a block of operations (that is, a set of
consecutive operations) in a shift. An ejection consists in replacing an existing operation by a new
one on a different site. The move transformation consists in extracting a block of operations from
a shift and reinserting it at another position. Two kinds of moves are defined: moving operations
from a shift to another one, or moving operations inside a shift. A swap exchanges two different
blocks of operations. As for moves, several kinds of swaps are defined: the swap of blocks between
shifts, the swap of blocks inside a shift, or the “mirror” which consists in a chronological reversal
of a block of operations in a shift. The mirror transformation corresponds to the well-known 2-opt
improvement used for solving traveling salesman problems (see Aarts and Lenstra (1997) for more
details).

move

insertion deletion

ejection

mirror

inside shift

swap
inside shift

blockbetween shifts
move

between shifts
swap

Figure 3 The transformations on operations.

Note. Original tours are given by straight arcs, dashed arcs are removed by the transformation, curved and vertical
arcs are added by the transformation.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 11

The transformations on shifts are grouped into the following types: insertion, deletion, rolling,
move, swap. As for operations, two kinds of insertion are defined: insertion of a shift containing one
operation (pickup or delivery), insertion of a shift with a pickup followed by a delivery. Deletion
consists in removing an existing shift. The rolling transformation translates a shift over time. The
move consists in extracting a shift from the planning of some of its resources and reinserting it into
the planning of other ones (such a transformation allows to change some of the resources of the
shift and its starting date). The swap is defined similarly: the resources of the shifts are exchanged
and their starting dates can be translated over time. The fusion of two consecutive shifts into one
new shift as well as the separation of one shift into two new ones are also available.

Now, these transformations are declined from different ways. The first option concerns the max-
imal size of blocks for transformations where blocks of operations are involved. In this way, more
generic transformations are defined allowing a larger diversification if needed: the (k, l)-ejection
which consists in replacing k existing operations by l new ones on different sites, the k-move which
consists in moving a block of k operations, the (k, l)-swap which consists in exchanging a block of
k operations with a block of l operations, or the k-mirror which consists in reversing a block of k
operations.

Then, the second option allows to specialize some transformations. These derivations involve
the choice of the sites affected by the transformations. For example, inserting a delivery serving a
customer without expected stockout in the considered horizon is not interesting when minimizing
the number of stockouts. In the same way, exchanging two operations which are performed on sites
which are very distant is unlikely to succeed when optimizing the logistic ratio. Several derivations
have been designed, which differ slightly from one transformation to another. Here are given the
two main derivations, essentially used when inserting/ejecting operations or inserting/rolling shifts:
“stockout” which places the delivery so as to solve a stockout, “nearest” where the customers to
be inserted or exchanged are chosen among the nearest ones.

The third option corresponds to the direction used to recompute all the dates of the modified
shifts: backward over time by considering the ending date of the shift as fixed, or forward over time
by considering its starting date as fixed. This option is available for all transformations, except
the deletion of shifts. For the transformations modifying two shifts at once (for example, move
operations between shifts), this results in four possible instantiations: backward/backward, back-
ward/forward, forward/backward, forward/forward. Finally, the fourth option allows to augment
the number of operations whose quantities are modified during the volume assignment. Recom-
puting operation quantities during the volume assignment increases its running time but allows
repairing stockouts possibly introduced by the transformation, increasing the acceptation rate of
the transformations (more details are given in the next section about volume assignment).

The reader shall note that no very large-scale neighborhood is employed. Roughly speaking, the
neighborhood explored here has a size O(n2) with n the number of operations and shifts in the
current solution, but the constant hidden by the O notation is large. The number of transformations
in TSO and TLR used respectively in optimization phases SO and LR are of 49 and 71. As evoked
previously, the random selection of transformations is simply performed with a uniform distribution.

5.3. Incremental evaluation machinery
Finally, the evaluation kernel of the local search is outlined. Playing a central role in the efficiency of
the local-search heuristic, only the evaluation procedure is detailed here. For each transformation,
this procedure follows the same process:

1. Transforming the current solution. The transformation modifies shifts and operations.
Resource/resource and resource/site compatibilities are checked.

2. Scheduling shifts. Modified shifts are rescheduled in order to compute the new dates. All
routing constraints (time windows, driver regulations, etc.) are taken into account.

Benoist et al.: Real-life inventory routing
12 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

3. Assigning volumes. Delivered or loaded quantities are recomputed for a limited number of
sites including the modified ones. Inventories are updated, and the new number of stockouts SO
is computed.

Roughly speaking, the objective of the scheduling routine is to build shifts with smallest costs,
whereas the volume assignment tends to maximize the quantity delivered to customers. Even
approximately, it leads to minimize the surrogate logistic ratio.

5.3.1. Scheduling shifts. The transformations modify some shifts in the current solution (at
most two actually). When a shift is impacted by a transformation (for example, an operation is
inserted into the shift), the starting and ending dates of its operations must be computed anew.
Consider the shift s = (o1, . . . , on) and assume that an operation ō is inserted into s between
operations i and j. The resulting shift s̄ is now composed of operations (o1, . . . , oi, ō, oj, . . . , on).
Then, we have two possibilities: rescheduling dates forward or rescheduling dates backward. The
forward (resp. backward) scheduling consists in fixing the ending date of oi (resp. the starting
date of oj) in order to recompute the starting (resp. ending) dates of (ō, . . . , on) (resp. (o1, . . . , ō)).
Here computing dates can be done without assigning volumes to operations, because the durations
of operations do not depend on delivered/loaded quantities. Since computing dates backward or
forward is made completely symmetric by representing shifts with doubly-linked lists, the discussion
shall be reduced to the forward case.

More formally, we have to solve the following decision problem, called Shift-Scheduling: given
a starting date for the shift s = (o1, . . . , on), determine the dates of each operation such that
the shift is admissible. Two equivalent optimization problems are: having fixed its starting date,
build a shift with the earliest ending date or with the minimum cost. A similar problem, called
Truckload-Trip-Scheduling, has been recently studied by Archetti and Savelsbergh (2007).
This latter problem is more restricted in the sense that only one opening time window is considered
for each location to visit and that the rest time must be equal to (not greater than) the legal dura-
tion. Archetti and Savelsbergh (2007) sketch a O(n2)-time algorithm for solving the truckload trip
scheduling problem, with n the number of locations to visit. For the sake of efficiency, a linear-time
and space algorithm has been designed for solving heuristically the Shift-Scheduling problem.

Algorithm Schedule-Shift-Greedy;
Input: an instance of Shift-Scheduling;
Output: an admissible shift if any, null otherwise;
Begin;

define an empty shift;
for each location to visit do
drive to next location (by taking rests as late as possible if needed);
if waiting time is needed (due to opening time windows) then
if rest time has been taken on current arc then
lengthen one of the rests to absorb waiting time;

else if a rest is needed (due to waiting time) or waiting time is larger than rest time then
take a rest (absorbing additional waiting time if any);

else
wait for the opening of location;

perform operation at next location and add it to the shift;
if maximal amplitude of the shift is exceeded then return null (infeasibility);

return the shift (feasibility);
End;

This algorithm is greedy in the sense that operations are chronologically set without backtrack-
ing. Each loop is performed in constant time and space (if rests are not stored explicitly) and
the whole algorithm runs in O(n) time and space. The correctness of the algorithm is ensured by

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 13

checking

delivery layover

delivery

ci

ci

cj

cj

waiting delivery

delivery

opening hours of cj

layover

checking checking

checking

Figure 4 An example with waiting time converted into rest time.

construction. The key of the Shift-Scheduling problem is to minimize unproductive time over
the shift. Thereby, the main idea behind the algorithm is to take rests as late as possible during
the trip and to avoid waiting time due to opening time windows of locations as much as possible.
Here we try to remove waiting time by converting it into rest time (see Figure 4), but only on the
current arc, which is suboptimal. Indeed, the algorithm could be reinforced by trying to convert
waiting time into rest time on previous arcs (as done by Archetti and Savelsbergh (2007)). But
such a modification would lead to a quadratic-time algorithm, which is not desired here, while not
guaranteeing optimality because of multiple opening time windows. On the other hand, we have
observed that waiting time is rarely generated in practice since many trips are completed in a day
or even half a day, ensuring optimality of the algorithm Schedule-Shift-Greedy in most cases.
Note that to our knowledge, the complexity of the Shift-Scheduling problem remains unknown.

5.3.2. Assigning volumes. Having rescheduled modified shifts, we have to reassign quan-
tities to impacted operations. Having fixed the dates of all operations, the problem consists in
assigning volumes such that inventory constraints are respected, while maximizing the total deliv-
ered quantity over all shifts. A similar problem, called Delivery-Volume-Optimization, has
been addressed by Campbell and Savelsbergh (2004b). In this problem, the authors consider only
deliveries on routes and not loadings, but this one is complicated by the fact that the duration of
an operation depends on the quantity delivered.

From the theoretical point of view, the present problem, called Volume-Assigning, is not so
hard once observed that it can be formulated as a maximum flow problem (in a directed acyclic
network). Then, this one can be solved in O(n3) time by using a classical maximum flow algorithm
(Cormen et al. 2004, pp. 625–675), with n the number of operations. As mentioned previously,
such a time complexity is not desirable here, even if guaranteeing an optimal volume assignment.
Practically, naive implementations having a time complexity depending on the number H of time
steps (360 in practice) are prohibited too; indeed, when the granularity becomes smaller than one
day, the number of time steps exceeds largely the number of operations at a site (two per day in
the worst case).

Thus, a O(n logn)-time greedy algorithm has been designed to solve approximately theVolume-
Assigning problem. The main idea behind the algorithm is simple: having ordered operations
chronologically (that is, according to increasing starting dates), quantities are assigned to opera-
tions in this order following a greedy rule. Here we use the basic rule consisting in maximizing the
quantity delivered/loaded at each operation, which is a good policy for minimizing the surrogate
logistic ratio (this joins the ideas developed by Campbell and Savelsbergh (2004b)). Note that the
chronological ordering is crucial for ensuring the respect of constraints related to inventory dynam-
ics (flow conservation, capacity constraints). In graph-theoretical terms, the algorithm consists in
pushing flow in the induced directed acyclic network following a topological order of the nodes
(ensuring that no node is visited twice).

Benoist et al.: Real-life inventory routing
14 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

t1

C
c2

c1

c0

p0

P

H

l

l

v

L

L

L

l

t0

Figure 5 An example of flow network for assigning volumes.

Note. Operations are represented by nodes, input flows L correspond to initial levels for each inventory (trailers ti,
customers ci, plants pi), input flow C (resp. P) corresponds to consumption of customer c1 (resp. production of plant
p0) over the time steps between the current operation and the previous one, flows l correspond to inventory levels
between two operations, flow v allows an overflow at plant. Flows on arcs representing inventory levels are upper
bounded by the capacity of the inventory; for customers, flows are also lower bounded by safety levels. Note that if
some consecutive operations appear over the same time step (like the ones dotted around), input flows corresponding
to consumption or production are cumulated at the last operation of this time step.

Because the number of operations may be large (as worst case in practice, one can imagine that
a thousand customers must be delivered one time per day, leading to n≥ 10 000), a tradeoff must
be found between the time complexity (even linear) and the quality of the volume assignment. To
introduce flexibility on this point, the greedy algorithm has been designed for computing partial
reassignments, from the minimal one to the complete one. The minimal reassignment consists in
changing only the volumes on impacted operations (that is, operations whose starting dates are
modified by the transformation); then, it suffices to tag as impacted some additional operations
to expand the reassignment. This complicates notably the practical implementation of the greedy
algorithm. Indeed, changing the quantity delivered at an operation is delicate since increasing
(resp. decreasing) the quantity may imply overflows (resp. stockouts) at future operations. Then,
determining the (maximum) quantity to deliver/load at each operation is not straightforward.

For each site p, denote by n̄p the number of operations between the first impacted operation
(that is, whose quantity can be modified by the transformation) in the chronological ordering and
the last one over the horizon. If no operation is impacted at site p, then n̄p = 0. Hence, we define
n̄=

∑
p n̄p. When the set of impacted operations consist only in operations whose dates are modified

by the transformation, one can observe in practice that n̄≪ n, since each transformation modify
at most two shifts (the number of sites visited by one shift is generally small). Consequently, it is
important to provide algorithms whose running time is linear in O(n̄), and not only in O(n). Below
is outlined an O(n̄ log n̄)-time algorithm for assigning volumes. But before, more explanations are
given on how the maximum deliverable quantity is computed (the maximum loadable quantity can
be obtained in a symmetric way).

Denote by l(c, i) (resp. l(t, i)) the level of customer c (resp. trailer t) before starting the operation
i and by qmax (c, i) the maximum quantity that can be delivered to customer c at operation i
without inducing overflows until the end of the horizon. In this way, the deliverable quantity at
operation i, denoted by q(i), is upper bounded by min{l(t, i), qmax (c, i)}. Then, this bound is
reinforced in such a way that the quantity remaining in the trailer after a delivery is sufficient to
avoid stockouts at customers visited by the shift until the next loading. Denote by qmin(c, i) the
minimum quantity to deliver at operation i to avoid stockout until the end of the horizon. Now, the
minimum quantity qmin(t, i) which must remain in the trailer t after operation i to avoid stockout

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 15

later is obtained by summing qmin(c, i) for all operations between the current one and the next
loading. Then, we have

q(i)≤min{l(t, i)− qmin(t, i), qmax (c, i)}

Given the chronological-ordered list of operations for each trailer, customer and plant, all the data
structures mentioned above can be computed in O(n̄) time. Updating l(c, i) (resp. l(t, i)) for any
operation i is done by sweeping forward the operations delivering customer c (resp. performed by
the trailer t). Then, updating qmin(c, i) and qmax (c, i) for any operation i is done by sweeping
backward the operations performed at customer c (note that the consumption between two oper-
ations is obtained in constant time by storing cumulated consumptions over the horizon). Finally,
computing qmin(t, i) for any operation i is done by sweeping backward the operations of shifts
performed by t. Below is given a sketch of algorithm.

Algorithm Assign-Volumes-Greedy;
Input: the set E of n̄ impacted operations;
Begin;

sort the set E chronologically;
for each impacted customer c do update l(c), qmin(c), qmax (c);
for each impacted trailer t do update l(t), qmin(t);
for each operation in E do
assign the maximum deliverable/loadable quantity to the operation;

End;

A basic example is given for illustrating the reset of delivered quantities and the update of data
structures. A customer has 4 scheduled operations A= (4,2), B = (10,5), C = (14,8), D= (18,12)
with the first number denoting the time step to which the operation occurs and the second number
denoting the delivered quantity. Here the horizon is composed of 24 time steps. The capacity C
of the tank is 14 and the safety level S is 2. Table 1 gives for each time step h the forecasted
consumption F (h) and the resulting tank level l(h). Then, values in data structures qmin and
qmax are detailed. These values are computed backward over the horizon by applying the following
recurrence:

qmin(h) =max{qmin(h+1),S − l(h)+F (h)}

qmax (h) =min{qmax (h+1),C − l(h)+F (h)}

Now, let us consider that operation B is impacted by a transformation: only the quantity of
operation B can be modified. The delivered quantity of operation B is reset to zero. Then, for
assigning a new quantity to operation B, only the values of column 10 have to be updated: l(10) is
decreased by 5, while qmin(10) and qmax (10) are increased by 5. In this way, the new (temporary)
values are: l(10) = 2, qmin(10) = 4 and qmax (10) = 6. It means that a minimal quantity of 4 has
to be delivered to avoid stockouts over the horizon (here time step 17 is critical) and a maximal
quantity of 6 can be delivered without implying overflows (here time step 18 is critical). We insist on
the fact that the other columns will only be updated if the transformation is eventually committed.

Table 1 Data structures for assigning volumes.

h 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

F 0 1 0 1 1 1 2 3 2 2 0 1 1 1 2 1 3 3 2 2 1 2 3 0

q - - - - 2 - - - - - 5 - - - 8 - - - 12 - - - - -

l 13 12 12 11 12 11 9 6 4 2 7 6 5 4 10 9 6 3 13 11 10 8 5 5

qmin 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -3 -3 -3 -3 -3 -3

qmax 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4 6 9 9

Benoist et al.: Real-life inventory routing
16 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

According to the previous discussion, the five data structures which serve to the calculation of
the maximum deliverable/loadable quantity are updated in O(n̄) time (recall that n̄ is the number
of impacted operations). Then, sorting the set E is done in O(n̄ log n̄) time in the worst case; in
effect, the heapsort algorithm is used (see Cormen et al. (2004, pp. 121–137)). Finally, the loop is
done in linear time, since the calculation of the maximum deliverable/loadable quantity requires
only constant time by using the adequate data structures. Consequently, the whole algorithm runs
in O(n̄ log n̄) time.

In theory, the greedy algorithm is far from being optimal. Figure 6 gives the smallest configuration
for which the greedy algorithm fails to find an optimal assignment. On the other hand, two sufficient
conditions hold for which the greedy assignment is optimal. The proofs are not detailed here
because easy to establish. The first condition corresponds to the case where each customer is served
at most once over the planning horizon. This condition is interesting because likely to be met in
practice. The second condition corresponds to the case where each shift visits only one customer.
For example, this condition is satisfied when customers have infinite storage capacity.

Experiments have been made for evaluating the practical performance of this critical routine. In
practice, its running time is shown to be constant with respect of the total number of operations:
it is 100 times faster than the full application of the greedy algorithm (that is, considering that all
operations are impacted, implying that n̄= n) and 2000 times faster than exact algorithms (tests
conducted with the simplex algorithm of the linear programming library GLPK 4.24). On the other
hand, the total volume delivered by the routine is close to the optimal assignment, in particular
when no stockout appears (the average gap between the greedy assignment and an optimal one is
lower than 2%).

H

c0

c1

o0

o1

o2

t0 t1

Figure 6 Bad configuration for the greedy volume assignment.

Finally, having assigned volumes, computing the gain of the transformation is done efficiently.
The (variation of) cost of shifts is computed during the scheduling, and the (variation of) total
delivered quantity is obtained during the assignment of volumes, without increasing the complexity
of the algorithms. The (variation of) stockouts costs are also computed during the assignment
of volumes. Note that computing the number of time steps in stockout between two consecutive
operations requires O(logH) time, with H the number of time steps over the horizon, since it is
equivalent to the problem of searching the zero of a discrete non-increasing function.

5.3.3. Implementation details. Although conceptually simple, the practical implementation
of the evaluation routines is considerably complicated by incremental aspects. Even if such points
are outside the scope of this paper, some important details of implementation are outlined below.

All sets (unordered or ordered, fixed or dynamic) are implemented as arrays, in order to improve
the cache memory locality. Memory allocation is avoided as much as possible during local-search
iterations: all the data structures are allocated before starting the local search; an array of capacity
n representing a dynamic list is extended if necessary by reallocating a larger block of memory
of size n+ k (with k ≈ 10). The most frequently used data structure is the one for maintaining

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 17

an unordered list of elements; although implemented as an array, it is designed to support basic
routines (find, insert, delete, clear) in O(1) time.

Since the success rate of transformations is low on average (a few percents), the rollback routine
must be very efficient. In this way, the decision variables of the problem (for example, the starting
and ending dates of an operation) are duplicated in such a way that only temporary data are modi-
fied by a transformation. In this way, the rollback routine consists simply in overwriting temporary
data by current ones (that is, corresponding to the current solution). But this is complicated by
the fact that during one transformation, several objects (in particular operations or shifts) are
likely to move in the arrays in which they are stored. In order to ensure the (temporary) insertion
or deletion of one object in O(1) time, the objects of the array are doubly linked (see Figure 7
illustrating the exchange of operations between shifts).

oj,7

sj

si

oi,0 oi,1 oi,2 oi,3 oi,4 oi,5 oi,6 oi,7

oj,0 oj,1 oj,2 oj,3 oj,4 oj,5 oj,6

Figure 7 Representation of shifts and operations.

Note. Operations oi,3, oi,4 of the shift si are swapped with operations oj,3, oj,4 of the shift sj : the current links (before
transformation) are plain, the temporary links (after transformation) are dashed.

Finally, we focus on a data structure which is particularly critical for efficiency. Operations or
shifts correspond to intervals over the horizon, for which we have the following need: given a date
over the horizon, find the previous, current, or next operation performed at a site if any. The same
problem arises for situating shifts performed by a resource. For this, the following data structure is
employed. Assume that the n operations are stored into an ordered list L. The horizon is divided
into m intervals U0, . . . ,Um−1 of given length u (with u dividing T). Then, an array I is defined
such that Ii refers to the first operation whose starting date is larger than the left endpoint of Ui.
The next operation after date d is found by searching the operations between the one pointed by
Ii with i= ⌊d/u⌋ and the one pointed by Ii+1. In this way, the search is done in O(k) time in the
worst case, with k the number of operations contained in the interval Ui. If u corresponds to the
entire horizon (m= 1), then k= n; on the other hand, if u corresponds to the smallest granularity
for expressing time (here the minute, leading to m= 21600), then k = 1. Assuming that starting
dates of operations performed at a site are uniformly distributed over the horizon, the number k
is equal to n/m. In this case, searching takes O(n/m) time (when evaluating the transformation),
but the array I requires O(m) space to be stored and O(m) time to be updated (when committing
the transformation). This implies two compromises: time to evaluate vs. time to commit, time to
evaluate vs. space.

Theoretically, the best value m∗ for solving the compromise on running time corresponds to
the minimum of the function T (m) = E(N/m) +Cm, with N the average number of operations
per customer and E (resp. C) a coefficient relative to the proportion of calls of the evaluate
routine (resp. commit routine) per customer. A simple calculation using differentiation yields m∗ =√

(EN)/C. Table 2 shows the values of m∗ for different realistic configurations of parameters
N,E,C. In practice, we have chosen m∗ = 15, which corresponds to interval Ui of one day: such a
value of m offers a good compromise for running time (even in worst-case situations) and leads to
a small memory footprint.

Benoist et al.: Real-life inventory routing
18 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Table 2 Theoretical values of m∗.

N 2 2 2 10 10 10 30 30 30
E 90 95 99 90 95 99 90 95 99
C 10 5 1 10 5 1 10 5 1

m∗ 4.2 6.2 14.1 9.5 13.8 31.5 16.4 23.9 54.5

6. Computational experiments
The whole algorithm was implemented in C# 2.0 programming language (for running on Microsoft
.NET 2.0 framework). The resulting program includes nearly 30 000 lines of code, whose 6 000
lines (20%) are dedicated to check the validity of all incremental data structures at each iteration
(only active in debug mode). The whole project (specifications, implementation, tests), realized
during the year 2008, required nearly 300 man-days. All statistics and results presented here have
been obtained (without parallelization) on a computer equipped with a Windows Vista operating
system and a chipset Intel Xeon X5365 (CPU 3 GHz, L1 cache 64 Kio, L2 cache 4 Mio, RAM
8 Go). The interested reader is invited to contact the authors to obtain some benchmarks to work
on this problem. Note that the urgency-based constructive heuristic used to compute an initial
solution is also called “greedy algorithm” below.

Since the local-search heuristic is randomized, 5 runs have been performed with different seeds
for each benchmark. All results are presented in terms of cost (or cost per kilo) but it shall be noted
that more than 80% of the cost is proportional to the traveled distance, which means that our
algorithm is likely to obtain similar gains in absence of fix costs (with a miles per ton objective).
Except contrary mention, all the statistics presented below correspond to average results obtained
for these 5 runs. Note that results requiring particular explanations are marked with asterisks (∗)
in figures presenting numerical experiments; these explanations could be found in the text below.

6.1. Short-term benchmarks
The local-search algorithm has been extensively tested on short-term benchmarks (15 days) with
different characteristics: realistic (that is, matching the operational conditions), pathological (for
example, with plants whose production is stopped several days), very large-scale (for example,
with 1 500 sites and 300 resources). Some aggregated results are presented here for 17 short-term
benchmarks involving from 46 to 500 customers. Table 3 gives the characteristics of these instances:
the number of customers, plants, depots, drivers, tractors, and trailers. For these instances, our
greedy algorithm finds a solution without stockout. Note that it is not always the case in operations
(see results on long-term benchmarks).

The gains obtained by the local-search heuristic are presented in Table 4 using the results of
the greedy algorithm as a reference. Two kinds of results are presented on this table: the gains
obtained by optimizing directly the logistic ratio LR (denoted by LS-LR) and the ones obtained by
optimizing the surrogate ratio LR′ (denoted by LS-LR′). In both cases, the local-search heuristic
improves drastically the quality of solutions provided by the greedy algorithm. The average gain
obtained by LS-LR (resp. LS-LR′) is of 29.2% (resp. 45.4%). Table 5 gives more statistics on the
solutions found by local search. The column “nb shift” (resp. “nb oper”) of the table reports the
number of shifts (resp. operations) of the solution. The column “avg oper” (resp. “avg deliv”, “avg
load”, “avg layov”) reports the average number of operations (resp. deliveries, loadings, layovers)
per shift. Finally, the column “avg dur” (resp. “avg dist”) reports the average traveled distance
(resp. duration) per shift. One can observe that more shifts and much more operations are included
in both LS-LR and LS-LR′ solutions, compared to ones produced by the greedy. On average, the
number of shifts (resp. operations) is increased by nearly 25% (resp. 50%). In this way, the average
number of operations per shift is increased from almost 4 to more than 6. The average distance
and duration of shifts are decreased slightly in the case of LS-LR, whereas these ones are increased
slightly in the case of LS-LR′.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 19

The greedy algorithm is running in a few seconds even for large-scale instances (12 seconds for
a test case with 1500 customers). Statistics about the performance of the local search are given
on Table 6. The column “attempt” corresponds to the number of transformations attempted by
the local-search heuristic. The columns “accept” (resp. “improve”) corresponds to the number of
accepted (resp. strictly improving) transformations; in addition, the corresponding rate for 100
(resp. 10 000) attempted transformations is specified. The local-search algorithm attempts more
than 10 000 transformations per second, even for large-scale instances. On average, our algorithm
visits more than 10 million solutions in the search space during 5 minutes of running time (which
is the desired time limit in operational conditions). When planning over a 15-days horizon, the
memory allocated by the program does not exceed 30 Mo for medium-size instances (hundred
sites, ten resources), and 300 Mo for large-scale instances (thousand sites, hundred resources). The
acceptance rate, which corresponds to the number of accepted transformations over the number
of attempted ones, varies essentially between 1 and 10%, with an average value close to 5% over
all the instances. Note that this rate is nearly constant all along the search, allowing a large
diversification (without the use of metaheuristics). On the other hand, the number of strictly
improving transformations is of several hundreds. One can observe that the choice of objective (LR
or LR′) does not affect the performance of the local-search heuristic.

6.2. Long-term benchmarks
The local-search algorithm has been tested on long-term benchmarks, in particular for verifying
that optimizing the surrogate objective leads to better solutions in the long run. Some results are
presented for 5 real-life benchmarks, each one with 105 days. The operational planning process
is simulated as follows. The simulator starts at day 0 by computing a planning over the next 15
days, with 5 minutes as time limit. Then, only the shifts starting at the first day of this short-
term planning are fixed (the levels of plants or customers visited by these shifts are updated, the
resources operating on these shifts become unavailable) and the process is iterated the following
day.

The characteristics of these 5 benchmarks are presented on Table 8. The complete statistics are
given for each heuristic on Tables 9, 10, and 11. The main remark is that the average number of
operations per shift is increased in local-search solutions. Indeed, the number of shifts in local-
search solutions is slightly smaller than in greedy solutions, whereas the number of operations is
increased. Besides, local-search solutions are characterized by a larger average traveled duration
per shift, thanks to an increased use of layovers. The average logistic ratios marked by an asterisk
are computed as the sum of shift costs for the 5 benchmarks divided by the sum of all delivered
quantities. The gains obtained by LS-LR′ are reported on the right part of Table 8. The column
“wst 1 mn” reports the worst LR gain in % obtained over the 5 runs for 1 minute of running
time per planning iteration. The column “avg 1 mn” (resp. “avg 5 mn”, “avg 1 h”) reports the
average gain in % for LR obtained within 1 minute (resp. 5 minutes, 1 hour) of computation per
planning iteration. Note that the solutions found by the greedy algorithm include some stockouts.
On average, the LR gain obtained by LS-LR′ with only 1 minute of running time per planning
iteration is of nearly 20% on average. These statistics demonstrate that our local-search heuristic,
beyond delivering high-quality solutions, is fast and robust (with exponential-inverse convergence).

Solutions provided by logistic experts are reported on Table 13. Note that the comparison
between the experts and the three heuristics is not completely fair. Indeed, because finding solu-
tions with no stockout (with actual safety levels) was difficult and fastidious, experts were allowed
to modify the initial long-term benchmarks in order to provide solutions without stockout. This
could explain the negative gain of greedy algorithm on instances L1, L2, L4. Moreover, the solution
provided by experts for instance L2 is considered as a “best-effort” solution, in the sense that many
more time has been spent to optimize carefully the solution.

Benoist et al.: Real-life inventory routing
20 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

6.3. Impact of the surrogate objective
The key figures for comparing LS-LR and LS-LR′ are given on Table 7 (for short-term benchmarks)
and on the right part of Table 12 (for long-term benchmarks). “avg DQ” corresponds to the
average total delivered quantity, and “avg delivq” to the average delivered quantity (per operation).
On short-term benchmarks, the total delivered quantity in both LS-LR and LS-LR′ solutions is
increased by more than 50% on average. But note that the average quantity per delivery is increased
by almost 5% in LS-LR′ solutions compared to LS-LR solutions.

On long-term benchmarks, one shall observe that LS-LR′ aims at increasing the average quantity
per delivery, which results in better long-term solutions. On instances L1 (resp. L2), the augmenta-
tion is of 21% (resp. 13%), leading to logistic ratio savings of 10% (resp. 7%) compared to LS-LR.
Moreover, LS-LR′ is able to produce solutions without stockout on the instance L4, contrary to
LS-LR. The values marked by an asterisk on Tables 12 and 13 are computed globally, for the 5
benchmarks (as done for logistic ratios on Tables 10 and 11).

7. Conclusion
Three contributions have been presented in this paper. First, a real-life IRP model encountered
in a worldwide industry has been introduced. Then, a surrogate objective based on local lower
bounds was defined for ensuring a long-term optimization when building a planning over the short
term. Our experiments show that using this objective decreases the final logistic cost by 4% on
average, compared to a direct minimization of the logistic ratio. Finally, a local-search heuristic
has been described for solving effectively and efficiently the real-life IRP over the short term (15
days in full details), even when some large-scale instances (thousand sites, hundred resources) are
considered. By assigning volumes approximately but thousands times faster than with a classical
flow algorithm, we are able to handle the problem as a whole, without decomposition. Using a
large large variety of randomized neighborhoods, our first-improvement descent visits millions of
solutions during the allocated execution time. Within 5 minutes of running time, we obtain long-
term savings of 20% on average compared to urgency-based strategies used by expert planners or
implemented in classical insertion heuristics. The resulting decision support system is progressively
deployed worldwide, confirming the promised gains in the field.

New researches are still conducted in several directions: further enlarging the scope of the IRP
addressed in the paper (in particular, refining costs and managing drivers’ desiderata); improving
the existing local-search heuristic (adding transformations with larger neighborhoods); reinforcing
the global lower bound by integrating tours visiting several sites and constraints on resources.
Another prospective but promising line of research is to proceed step by step toward a global
optimization of the supply chain, by tackling jointly the production and distribution problems, and
ultimately by integrating purchasing issues. Indeed, we think that local-search approaches like the
one developed presently are best suited for solving such very large-scale problems, while inducing
new algorithmic challenges.

Acknowledgments
First, we warmly thank M. Saul Pedraza Morales (École de Mines de Nantes), which worked on
several topics in relation with this paper and performed some of the numerical experiments (in
particular about the practical efficiency of our volume assignment algorithm), during its internship
at Bouygues e-lab in 2009. Then, we thank Dr. Philippe Baptiste (LIX, École Polytechnique) for
suggesting to model inventory constraints as a flow network. We also express our gratitude to
the two anonymous referees and the associate editor for their reviewing, which has resulted in an
improved paper.

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 21

References
Aarts, E., J. Lenstra, eds. 1997. Local Search in Combinatorial Optimization. Wiley-Interscience Series in

Discrete Mathematics and Optimization, John Wiley & Sons, Chichester, England.

Archetti, C., M. Savelsbergh. 2007. The truckload trip scheduling problem. TRISTAN VI, the 6th Triennial
Symposium on Transportation Analysis. Phuket Island, Thailand.

Bard, J.F., F. Huang, M. Dror, P. Jaillet. 1998. A branch and cut algorithm for the VRP with satellite
facilities. IIE Transactions 30(9) 831–834.

Bell, W., L. Dalberto, M. Fisher, A. Greenfield, R. Jaikumar, P. Kedia, R. Mack, P. Prutzman. 1983.
Improving the distribution of industrial gases with an on-line computerized routing and scheduling
optimizer. Interfaces 13(6) 4–23.

Benoist, T., B. Estellon, F. Gardi, A. Jeanjean. 2009. High-performance local search for solving inventory
routing problems. H. Hoos T. Stützle, M. Birattari, ed., SLS 2009, the 2nd International Workshop
on Engineering Stochastic Local Search Algorithms, Lecture Notes in Computer Science, vol. 5752.
Springer, 105–109.

Campbell, A., L. Clarke, A. Kleywegt, M. Savelsbergh. 1998. The inventory routing problem. T. Crainic,
G. Laporte, eds., Fleet Management and Logistics. Kluwer Academic Publishers, Norwell, MA, 95–113.

Campbell, A., L. Clarke, M. Savelsbergh. 2002. Inventory routing in practice. P. Toth, D. Viego, eds.,
The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications 9, SIAM,
Philadelphia, PA, 309–330.

Campbell, A., M. Savelsbergh. 2004a. A decomposition approach for the inventory-routing problem. Trans-
portation Sci. 38(4) 488–502.

Campbell, A., M. Savelsbergh. 2004b. Delivery volume optimization. Transportation Sci. 38(2) 210–223.

Campbell, A., M. Savelsbergh. 2004c. Efficient insertion heuristics for vehicle routing and scheduling prob-
lems. Transportation Sci. 38(3) 369–378.

Cormen, T., C. Leiserson, R. Rivest, C. Stein. 2004. Introduction à l’Algorithmique. Dunod, Paris, France.
French 2nd edition.

Dror, M., M. Ball. 1987. Inventory/routing: reduction from an annual to a short-period problem. Naval
Research Logistics 34(6) 891–905.

Estellon, B., F. Gardi, K. Nouioua. 2006. Large neighborhood improvements for solving car sequencing
problems. RAIRO Operations Research 40(4) 355–379.

Estellon, B., F. Gardi, K. Nouioua. 2008. Two local search approaches for solving real-life car sequencing
problems. Eur. J. Oper. Res. 191(3) 928–944.

Estellon, B., F. Gardi, K. Nouioua. 2009. High-performance local search for task scheduling with human
resource allocation. H. Hoos T. Stützle, M. Birattari, ed., SLS 2009, the 2nd International Workshop
on Engineering Stochastic Local Search Algorithms, Lecture Notes in Computer Science, vol. 5752.
Springer, 1–15.

Feo, T., G. Resende. 1995. Greedy randomized adaptive search procedures. Journal of Global Optimization
6(2) 109–133.

Lau, H., Q. Liu, H. Ono. 2002. Integrating local search and network flow to solve the inventory routing
problem. AAAI 2002, the 18th National Conference on Artificial Intelligence. AAAI Press, Menlo
Park, CA, 9–14.

Savelsbergh, M., J.-H. Song. 2007a. Inventory routing with continuous moves. Computers and Operations
Research 34(6) 1744–1763.

Savelsbergh, M., J.-H. Song. 2007b. Performance measurement for inventory routing. Transportation Sci.
41(1) 44–54.

Savelsbergh, M., J.-H. Song. 2008. An optimization algorithm for the inventory routing with continuous
moves. Computers and Operations Research 35(7) 2266–2282.

Solomon, M. 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints.
Oper. Res. 35(2) 254–265.

Benoist et al.: Real-life inventory routing
22 Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS

Appendix

Table 3 Short-term benchmarks characteristics (17 test cases).

customers plants depots drivers tractors trailers

minimum 46 1 1 10 5 10
maximum 500 5 2 50 50 50
average 138 1.9 1.2 28 19 25

Table 4 Short-term benchmarks: local search
results.

LS-LR LS-LR′

minimum gain over greedy 20.8% 28.5%
maximum gain over greedy 39.1% 65.6%
average gain over greedy 29.2% 45.4%

Table 5 Short-term benchmarks: statistics on shifts (average over all test cases).

algorithm nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

greedy 68.6 473.6 4.9 2.8 2.2 0.2 481.8 676.8
LS-LR 91.8 689.6 5.9 3.3 2.6 0.2 399.7 617.5
LS-LR′ 86.7 692.2 6.4 3.5 2.9 0.2 487.9 708.4

attempt accept improve
minimum 4.867 M 141 962 2.6% 497 0.4 h%
maximum 16.167 M 705 213 6.6% 2 067 4.2 h%
average 8.596 M 377 169 4.5% 937 1.3 h%

attempt accept improve
minimum 3.706 M 117 333 2.4% 389 0.5 h%
maximum 15.184 M 536 327 6.8% 2 218 5.2 h%
average 7.830 M 303 620 4.1% 946 1.5 h%

Table 6 Short-term benchmarks: statistics on transformations for LS-LR (left) and LS-LR′ (right) optimization.
M = million, h% = one-hundredths percent.

Table 7 Short-term benchmarks: statistics on volumes.

avg DQ greedy avg DQ LS-LR avg DQ LS-LR′ avg delivq greedy avg delivq LS-LR avg delivq LS-LR′

3 031 400 4 565 518 4 861 465 15 992 16 066 17 073

Table 8 Long-term benchmarks: characteristics and LR gains with different time limits.

data customers plants depots drivers tractors trailers callins orders wst 1 mn avg 1 mn avg 5 mn avg 1 h

L1 75 6 1 35 21 5 19 56 23.8% 24.6% 26.3% 26.5%
L2 75 6 1 35 21 5 20 55 22.3% 23.5% 24.9% 25.2%
L3 175 8 1 35 21 12 36 189 5.2% 5.8% 8.3% 11.2%
L4 165 4 1 24 11 7 33 167 9.9% 11.2% 14.0% 18.9%
L5 198 8 7 12 12 12 3 40 32.5% 34.2% 35.7% 35.9%

average 138 6 2 28 17 8 22 101 18.7% 19.9% 21.8% 23.5%

Benoist et al.: Real-life inventory routing
Transportation Science 00(0), pp. 000–000, c⃝ 0000 INFORMS 23

Table 9 Long-term benchmarks: greedy results.

data SO SC DQ LR nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

L1 652 406 443 3 767 868 0.107 871 189 503 2.7 1.6 1.0 0.6 640 1 320
L2 146 407 379 3 827 560 0.106 433 196 506 2.6 1.6 1.0 0.5 619 1 235
L3 86 1 092 976 31 989 357 0.034 167 790 3 584 4.5 2.7 1.8 0.2 366 954
L4 257 808 887 18 433 289 0.043 882 590 2 249 3.8 2.4 1.4 0.2 395 844
L5 85 145 339 8 830 708 0.016 458 295 1 020 3.5 1.9 1.5 1.2 598 1 760

average 245 572 205 13 369 756 ∗0.042 798 412 1 572 3.4 2.0 1.3 0.5 524 1 223

Table 10 Long-term benchmarks: LS-LR results.

data SO SC DQ LR nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

L1 0 340 767 3 840 502 0.088 730 137 590 4.3 3.0 1.3 0.8 721 1 618
L2 0 335 661 3 899 780 0.086 072 148 570 3.9 2.7 1.2 0.7 660 1 445
L3 0 1 019 292 32 079 238 0.031 774 839 3 570 4.3 2.6 1.7 0.2 317 873
L4 17 697 009 18 694 845 0.037 283 605 2 400 4.0 2.6 1.4 0.2 321 735
L5 0 106 326 9 475 562 0.011 221 110 1 324 12.0 7.8 4.3 3.2 1 256 4 286

average 3 499 811 13 597 985 ∗0.036 756 368 1 691 5.7 3.7 2.0 1.0 655 1 792

Table 11 Long-term benchmarks: LS-LR′ results.

data SO SC DQ LR nb shift nb oper avg oper avg deliv avg load avg layov avg dist avg dur

L1 0 321 449 4 045 989 0.079 449 148 542 3.7 2.4 1.3 0.7 632 1 403
L2 0 321 207 4 016 621 0.079 969 140 541 3.9 2.6 1.3 0.7 669 1 471
L3 0 1 012 191 32 320 180 0.031 318 807 3 583 4.4 2.7 1.8 0.2 327 890
L4 0 701 139 18 587 949 0.037 720 602 2 396 4.0 2.6 1.4 0.2 325 744
L5 0 101 913 9 630 979 0.010 582 138 1 352 9.8 6.3 3.5 2.2 945 3 159

average 0 491 580 13 720 344 ∗0.035 829 367 1 683 5.2 3.3 1.9 0.8 580 1 533

Table 12 Long-term benchmarks: gains of LS-LR′ against LS-LR (left) and gains obtained by local search against
greedy (right).

data LS-LR′ against LS-LR data gain LS-LR gain LS-LR′ avg delivq greedy avg delivq LS-LR avg delivq LS-LR′

L1 10% L1 17.7% 26.3% 12 460 9 344 11 391
L2 7% L2 19.1% 24.9% 12 205 9 759 11 035
L3 1% L3 7.0% 8.3% 14 997 14 706 14 833
L4 ∗-1% L4 15.0% 14.0% 13 018 11 885 11 876
L5 6% L5 31.8% 35.7% 15 755 11 044 11 078

average ∗14.1% ∗16.3% ∗14 146 ∗12 537 ∗12 864

Table 13 Long-term benchmarks: gains obtained by local search against logistic experts.

data SO SC DQ LR gain greedy gain LS-LR gain LS-LR′

L1 0 378 778 3 725 847 0.101 662 -6.1% 12.7% 21.9%
L2 0 328 364 3 567 370 0.092 047 -15.6% 6.5% 13.1%
L3 0 1 257 354 32 667 576 0.038 489 11.2% 17.4% 18.6%
L4 0 788 893 18 683 473 0.042 224 -3.9% 11.7% 10.7%
L5 0 290 921 10 398 050 0.027 978 41.2% 59.9% 62.2%

average 0 608 862 13 808 463 ∗0.044 093 ∗2.9% ∗16.6% ∗18.7%

